亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Neural Network Based Feature Learning for Large-Scale Quality-Related Process Monitoring

计算机科学 卷积神经网络 人工智能 数据挖掘 块(置换群论) 特征(语言学) 故障检测与隔离 过程(计算) 钥匙(锁) 机器学习 特征提取 模式识别(心理学) 数学 操作系统 哲学 语言学 计算机安全 执行机构 几何学
作者
Jiazhen Zhu,Hongbo Shi,Bing Song,Tao Yang,Shuai Tan
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (7): 4555-4565 被引量:13
标识
DOI:10.1109/tii.2021.3124578
摘要

As industrial technology develops, industrial processes become increasingly large and complex, the traditional methods are difficult to extract features that can represent the condition of the whole process and the effect of fault on quality indicators. Therefore, a novel multiblock decouple convolutional neural network (multiblock DCN) algorithm is proposed. First, key process variables are selected, and process variables are grouped into multiple blocks for the following monitoring. Then, in each block, the proposed DCN constructs a regression model between key process variables and quality indicators, in which the regression model utilizes an improved convolutional neural network as a feature extractor and a decoupling layer as a feature regularizer. Afterward, the monitoring results of each block are integrated into a global monitoring index based on Bayesian theory. After fault detection, variable oblivion contribution plot is presented to locate faulty variables. Finally, two industrial cases are used to demonstrate the effectiveness of multiblock DCN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
伊比利亚的微风完成签到,获得积分10
16秒前
包破茧发布了新的文献求助10
16秒前
汉堡包应助yu采纳,获得30
16秒前
高挑的早晨完成签到,获得积分10
17秒前
xcuwlj完成签到 ,获得积分10
17秒前
21秒前
酷波er应助Copper00采纳,获得30
21秒前
三席完成签到,获得积分10
22秒前
三席发布了新的文献求助10
29秒前
33秒前
orixero应助读书的时候采纳,获得10
41秒前
45秒前
含糊的镜子完成签到,获得积分10
46秒前
1分钟前
季风气候完成签到 ,获得积分10
1分钟前
纯真如松发布了新的文献求助10
1分钟前
null应助jh采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
morena应助科研通管家采纳,获得30
1分钟前
null应助jh采纳,获得10
1分钟前
FashionBoy应助读书的时候采纳,获得10
1分钟前
1分钟前
满意机器猫完成签到 ,获得积分10
1分钟前
null应助jh采纳,获得10
1分钟前
null应助jh采纳,获得10
1分钟前
凉宫八月完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
九月完成签到,获得积分10
1分钟前
安静含卉发布了新的文献求助10
1分钟前
充电宝应助读书的时候采纳,获得10
1分钟前
跳跳狗完成签到,获得积分10
1分钟前
2分钟前
2分钟前
香蕉觅云应助葛儿采纳,获得80
2分钟前
ding应助琪琪采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739284
求助须知:如何正确求助?哪些是违规求助? 5385145
关于积分的说明 15339593
捐赠科研通 4881881
什么是DOI,文献DOI怎么找? 2623999
邀请新用户注册赠送积分活动 1572683
关于科研通互助平台的介绍 1529459