亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AdaPool: A Diurnal-Adaptive Fleet Management Framework Using Model-Free Deep Reinforcement Learning and Change Point Detection

强化学习 计算机科学 点(几何) 人工智能 变更检测 数学 几何学
作者
Marina Haliem,Vaneet Aggarwal,Bharat Bhargava
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2471-2481 被引量:13
标识
DOI:10.1109/tits.2021.3109611
摘要

This paper introduces an adaptive model-free deep reinforcement approach that can recognize and adapt to the diurnal patterns in the ride-sharing environment with car-pooling. Deep Reinforcement Learning (RL) suffers from catastrophic forgetting due to being agnostic to the timescale of changes in the distribution of experiences. Although RL algorithms are guaranteed to converge to optimal policies in Markov decision processes (MDPs), this only holds in the presence of static environments. However, this assumption is very restrictive. In many real-world problems like ride-sharing, traffic control, etc., we are dealing with highly dynamic environments, where RL methods yield only sub-optimal decisions. To mitigate this problem in highly dynamic environments, we (1) adopt an online Dirichlet change point detection (ODCP) algorithm to detect the changes in the distribution of experiences, (2) develop a Deep Q Network (DQN) agent that is capable of recognizing diurnal patterns and making informed dispatching decisions according to the changes in the underlying environment. Rather than fixing patterns by time of week, the proposed approach automatically detects that the MDP has changed, and uses the results of the new model. In addition to the adaptation logic in dispatching, this paper also proposes a dynamic, demand aware vehicle-passenger matching and route planning framework that dynamically generates optimal routes for each vehicle based on online demand, vehicle capacities, and locations. Evaluation on New York City Taxi public dataset shows the effectiveness of our approach in improving the fleet utilization, where less than 50% of the fleet are utilized to serve the demand of up to 90% of the requests, while maximizing profits and minimizing idle times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
科研通AI5应助Silver采纳,获得10
12秒前
秋雨发布了新的文献求助10
14秒前
星辰大海应助失眠的筝采纳,获得10
15秒前
18秒前
NexusExplorer应助meikoo采纳,获得10
19秒前
20秒前
Silver发布了新的文献求助10
23秒前
爱静静应助白华苍松采纳,获得10
24秒前
吕绪特完成签到 ,获得积分10
24秒前
Silver完成签到,获得积分10
30秒前
Omni完成签到,获得积分10
34秒前
34秒前
失眠的筝发布了新的文献求助10
38秒前
DreamMaker完成签到,获得积分10
40秒前
Vegeta完成签到 ,获得积分10
42秒前
识趣完成签到,获得积分10
46秒前
木子水告完成签到,获得积分10
49秒前
50秒前
50秒前
HR112应助VELPRO采纳,获得10
51秒前
56秒前
李健应助爆爆采纳,获得10
58秒前
meikoo发布了新的文献求助10
1分钟前
1分钟前
一一发布了新的文献求助10
1分钟前
1分钟前
高贵石头发布了新的文献求助10
1分钟前
1分钟前
失眠的筝完成签到,获得积分10
1分钟前
Young完成签到 ,获得积分10
1分钟前
Akim应助热浪午后采纳,获得10
1分钟前
爆爆发布了新的文献求助10
1分钟前
1分钟前
852应助高贵石头采纳,获得10
1分钟前
一一完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
xiaozhao发布了新的文献求助10
1分钟前
万能图书馆应助努力学习采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555687
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390713
捐赠科研通 2831030
什么是DOI,文献DOI怎么找? 1556295
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803