已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combining theory and experiment in Pt-based catalysts design for energy conversion

催化作用 质子交换膜燃料电池 铂金 阴极 膜电极组件 化学 化学工程 过渡金属 材料科学 电极 工程类 有机化学 物理化学 电解质
作者
Jin Huang
摘要

Author(s): Huang, Jin | Advisor(s): Huang, Yu | Abstract: Energy crisis and climate change are the imminent challenges faced by mankind that demand instant solutions in replacing fossil fuels with alternative clean energy sources. To meet this demand, the hydrogen fuel cell industry has witnessed tremendous growth within the past decade. However, the broad dissemination of proton-exchange membrane fuel cells (PEMFCs) is still limited by the high cost originated from the high loading of platinum-group metals (PGM) based catalysts to accelerate the sluggish oxygen reduction reaction (ORR) at the cathode. Therefore, it is central to design high-performance ORR catalysts and validate their performance in the membrane electrode assembly (MEA). In the first chapter of my dissertation, by combining theoretical modeling and experimental observations, we developed a binary experimental descriptor (BED) that directly correlates with the calculated oxygen binding energy ∆E O on Pt-alloy catalyst surface. The BED captures both the strain and Pt-transition metal coupling contributions based on experimental parameters extracted from X-ray absorption spectroscopy. This leads to an experimentally validated Sabatier plot wherein the BED can be used to predict not only the catalytic activity but also the stability of a wide range of Pt-alloy ORR catalysts. Based on the BED, we further designed an ORR catalyst wherein high activity and stability are simultaneously achieved. The second chapter is an extension of the first chapter, in which I demonstrated that tetrahedral PtCuNi catalysts, as an efficient multifunctional catalyst, did not only showed excellent ORR performance but also exhibited high methanol/ethanol oxidation reaction (MOR/EOR) performance, which can be potentially used in the direct methanol/ethanol fuel cells (DMFCs/DEFCs). By tailoring the surface composition, the optimal catalyst with a composition of Pt56Cu28Ni16 showed a MOR and EOR specific activity (SA) of 14.0  1.0 mA/cm2 and 11.2  1.0 mA/cm2, respectively; and mass activity (MA) of 7.0  0.5A/mgPt and 5.6  0.6 A/mgPt for the MOR and EOR, respectively. In the third chapter, I applied some highly promising ORR catalysts in MEA. In specific, I developed an ultralow Pt loading (total loading of 0.072 mgPt/cm2) and high-performance MEA using ultrathin platinum-cobalt nanowires (PtCoNWs) as cathode catalysts. The PtCoNWs showed a high ECSA of 73.2 m2/gPt and achieved an unprecedented MA of 1.06 � 0.14 A/mgPt [0.9 ViR-free] at the beginning of life (BOL) stage in MEA. This MA is 3.3 times that of the commercial Pt/C (0.32 A/mgPt) and far surpasses the Department of Energy (DOE) 2020 target (0.44 A/mgPGM). The PtCoNWs reached a peak power density of 1016 mW/cm2, outperforming the PtNWs (830 mW/cm2) and Pt/C (773 mW/cm2) with comparable Pt loading. After the AST, the PtCoNWs showed a respectable end of life (EOL) MA of 0.45 A/mgPt, remaining above the DOE 2020 BOL target. In the last chapter, I tried to tailor the interfacial properties to further enhance the surface microkinetic. In brief, I developed a facile and controllable molecular surface modification approach using dimethylformamide (DMF) to successfully improve the ORR performance of Pt-based catalysts. Significantly, our molecular dynamics (MD) simulations elucidated that DMF can disrupt interfacial water hydrogen-bonding networks, therefore allowing accelerated water exchange kinetics, facile O2 transport towards Pt surface, increased interfacial oxygen concentration, and adsorption time (around twice compared to pure Pt(111) surface), justifying enhanced ORR activity. We further applied this approach to a model Pt-alloy catalysts (PtCuNi), which achieved an unprecedented SA of 21.8 � 2.1 mA/cm2 at 0.9 V versus the reversible hydrogen electrode (RHE), about 2.65 times improvement comparing to original PtCuNi catalysts, and nearly double previously reported the best value, leading to an ultrahigh MA of 10.7 � 1.1 A/mgPt. Importantly, after 20,000 cycles of accelerated degradation tests (ADT), surface-modified PtCuNi showed even better SA and MA than the initial performance of original PtCuNi, suggesting the surface modification can also considerably extend the lifetime of the catalyst.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
克劳修斯完成签到 ,获得积分10
刚刚
2秒前
chujun_cai完成签到 ,获得积分10
3秒前
内向的火车完成签到 ,获得积分10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
1111完成签到,获得积分10
5秒前
numagok完成签到,获得积分10
5秒前
rayx3x应助科研通管家采纳,获得10
5秒前
一只不受管束的小狸Miao完成签到 ,获得积分10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得30
5秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
河鲸完成签到 ,获得积分10
7秒前
少一点丶天分完成签到,获得积分10
8秒前
老实的衬衫完成签到 ,获得积分10
9秒前
特特雷珀萨努完成签到 ,获得积分10
9秒前
科研q完成签到 ,获得积分10
11秒前
桥西小河完成签到 ,获得积分10
11秒前
七色光完成签到,获得积分10
12秒前
小森华东完成签到 ,获得积分10
12秒前
13秒前
一卷钢丝球完成签到 ,获得积分10
15秒前
罗马没有马完成签到 ,获得积分10
16秒前
科研通AI6应助lan采纳,获得10
16秒前
青衫完成签到 ,获得积分10
18秒前
如意枫叶发布了新的文献求助10
19秒前
幸福的向日葵完成签到 ,获得积分10
21秒前
shuang完成签到 ,获得积分10
21秒前
22秒前
22秒前
木心发布了新的文献求助10
22秒前
Zhao完成签到 ,获得积分10
23秒前
25秒前
还好完成签到 ,获得积分10
26秒前
26秒前
26秒前
Menand完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418128
求助须知:如何正确求助?哪些是违规求助? 4533794
关于积分的说明 14142517
捐赠科研通 4450087
什么是DOI,文献DOI怎么找? 2441101
邀请新用户注册赠送积分活动 1432850
关于科研通互助平台的介绍 1410054