A Nomogram for Predicting Multiple Metastases in Metastatic Colorectal Cancer Patients: A Large Population-Based Study

列线图 医学 结直肠癌 肿瘤科 单变量 内科学 转移 多元分析 逻辑回归 单变量分析 多元统计 癌症 统计 数学
作者
Yuhang Ge,Renshen Xiang,Jun Ren,Wei Song,Wei Lu,Tao Fu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:11 被引量:10
标识
DOI:10.3389/fonc.2021.633995
摘要

The present study aims to discover the risk factors of multiple metastases and develop a functional nomogram to forecast multiple metastases in metastatic colorectal cancer (mCRC) patients.mCRC cases were retrospectively collected from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2016. Survival times between multiple metastases and single metastasis were compared using Kaplan-Meier analysis and log-rank tests. Risk factors for multiple metastases were determined by univariate and multivariate logistic regression analyses, and a nomogram was developed to forecast the probability of multiple metastases in mCRC patients. We assessed the nomogram performance in terms of discrimination and calibration, including concordance index (C-index), area under the curve (AUC), and decision curve analysis (DCA). Bootstrap resampling was used as an internal verification method, and at the same time we select external data from Renmin Hospital of Wuhan University as independent validation sets.A total of 5,302 cases were included in this study as training group, while 120 cases were as validation group. The patients with single metastasis and multiple metastases were 3,531 and 1,771, respectively. The median overall survival (OS) and cancer-specific survival (CSS) for patients with multiple metastases or single metastasis were 19 vs. 31 months, and 20 vs. 33 months, respectively. Based on the univariate and multivariate analyses, clinicopathological characteristics were associated with number of metastasis and were used to establish nomograms to predict the risk of multiple metastases. The C-indexes and AUC for the forecast of multiple metastases were 0.715 (95% confidence interval (CI), 0.707-0.723), which showed the nomogram had good discrimination and calibration curves of the nomogram showed no significant bias from the reference line, indicating a good degree of calibration. In the validation group, the AUC was 0.734 (95% CI, 0.653-0.834), and calibration curve also showed no significant bias, indicating the favorable effects of our nomogram.We developed a new nomogram to predict the risk of multiple metastases. The nomogram shows the good prediction effect and can provide assistance for clinical diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chengxue发布了新的文献求助10
1秒前
MchemG举报peppa奇求助涉嫌违规
1秒前
修辞完成签到 ,获得积分10
3秒前
5秒前
lzx完成签到,获得积分10
6秒前
6秒前
领导范儿应助付2采纳,获得10
6秒前
xl完成签到 ,获得积分10
7秒前
SYLH应助hhh采纳,获得10
8秒前
端庄大白完成签到 ,获得积分10
8秒前
HT完成签到,获得积分10
9秒前
wmk完成签到,获得积分10
9秒前
不是风动关注了科研通微信公众号
9秒前
wei发布了新的文献求助10
9秒前
9秒前
轩辕寄风应助一个小胖子采纳,获得10
10秒前
12秒前
LLN完成签到,获得积分20
12秒前
LIM发布了新的文献求助10
12秒前
海鑫王发布了新的文献求助10
13秒前
hx完成签到 ,获得积分10
13秒前
13秒前
木子完成签到 ,获得积分10
15秒前
15秒前
科研通AI2S应助潇洒飞丹采纳,获得10
15秒前
16秒前
CAOHOU举报KY Mr.WANG求助涉嫌违规
17秒前
19秒前
付2发布了新的文献求助10
19秒前
天天快乐应助榴莲采纳,获得10
21秒前
21秒前
ZHXR发布了新的文献求助10
22秒前
wei完成签到,获得积分20
24秒前
chengxue完成签到,获得积分10
25秒前
THUNDERSTONE完成签到,获得积分10
26秒前
lll完成签到,获得积分20
26秒前
美好冰蓝发布了新的文献求助10
26秒前
28秒前
海鑫王完成签到,获得积分10
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959245
求助须知:如何正确求助?哪些是违规求助? 3505545
关于积分的说明 11124398
捐赠科研通 3237291
什么是DOI,文献DOI怎么找? 1789026
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824