Image fusion using a multi-level image decomposition and fusion method

人工智能 图像融合 计算机科学 计算机视觉 特征(语言学) 保险丝(电气) 模式识别(心理学) 特征提取 复合图像滤波器 投影(关系代数) 融合 图像(数学) 算法 物理 哲学 语言学 量子力学
作者
Yu Tian,Wenjing Yang,Ji Wang
出处
期刊:Applied Optics [The Optical Society]
卷期号:60 (24): 7466-7466 被引量:15
标识
DOI:10.1364/ao.432397
摘要

In recent years, image fusion has emerged as an important research field due to its various applications. Images acquired by different sensors have significant differences in feature representation due to the different imaging principles. Taking visible and infrared image fusion as an example, visible images contain abundant texture details with high spatial resolution. In contrast, infrared images can obtain clear target contour information according to the principle of thermal radiation, and work well in all day/night and all weather conditions. Most existing methods employ the same feature extraction algorithm to get the feature information from visible and infrared images, ignoring the differences among these images. Thus, this paper proposes what we believe to be a novel fusion method based on a multi-level image decomposition method and deep learning fusion strategy for multi-type images. In image decomposition, we not only utilize a multi-level extended approximate low-rank projection matrix learning decomposition method to extract salient feature information from both visible and infrared images, but also apply a multi-level guide filter decomposition method to obtain texture information in visible images. In image fusion, a novel fusion strategy based on a pretrained ResNet50 network is presented to fuse multi-level feature information from both visible and infrared images into corresponding multi-level fused feature information, so as to improve the quality of the final fused image. The proposed method is evaluated subjectively and objectively in a large number of experiments. The experimental results demonstrate that the proposed method exhibits better fusion performance than other existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
才才完成签到 ,获得积分10
2秒前
梁家小卖部完成签到,获得积分10
2秒前
欣喜纸飞机完成签到,获得积分10
6秒前
popo6150完成签到 ,获得积分10
7秒前
犹豫的紫山完成签到,获得积分10
8秒前
LZYC完成签到,获得积分20
12秒前
猫又完成签到,获得积分10
20秒前
20秒前
20秒前
yaoyh_gc发布了新的文献求助10
21秒前
赘婿应助Jsc采纳,获得50
22秒前
CoCo完成签到 ,获得积分10
23秒前
一彤展翅完成签到,获得积分10
26秒前
OnMyWorldside发布了新的文献求助10
26秒前
x1完成签到,获得积分10
28秒前
可耐的手机完成签到 ,获得积分10
29秒前
是乐乐呀完成签到,获得积分20
30秒前
oceanao举报趣多多求助涉嫌违规
34秒前
纯真的诗兰完成签到,获得积分10
34秒前
iNk应助x1采纳,获得20
34秒前
仁继宪完成签到 ,获得积分10
35秒前
SciGPT应助是乐乐呀采纳,获得10
35秒前
爱静静给卟乖的求助进行了留言
36秒前
a雪橙完成签到 ,获得积分10
37秒前
MoNesy完成签到,获得积分10
38秒前
李小伟完成签到,获得积分10
38秒前
JR完成签到,获得积分20
39秒前
王提发布了新的文献求助10
39秒前
JamesPei应助xiao采纳,获得30
39秒前
贰鸟应助飘逸人达采纳,获得20
39秒前
46秒前
47秒前
Owen应助科研通管家采纳,获得30
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
香蕉觅云应助科研通管家采纳,获得10
47秒前
wking应助科研通管家采纳,获得10
47秒前
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
大个应助科研通管家采纳,获得30
48秒前
英俊的铭应助科研通管家采纳,获得10
48秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813989
关于积分的说明 7902647
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187