生物修复
环境修复
环境科学
土壤污染
土壤水分
环境友好型
污染
环境污染
污染
环境化学
环境工程
废物管理
生化工程
环境保护
生态学
化学
生物
工程类
土壤科学
作者
Chen Wu,Feng Li,Shengwei Yi,Fei Ge
标识
DOI:10.1016/j.jenvman.2021.113185
摘要
Soils contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) have been becoming a worldwide concerned environmental problem because of threatening public healthy via food chain exposure. Thus soils polluted by HMs and PAHs need to be remediated urgently. Physical and chemical remediation methods usually have some disadvantages, e.g., cost-expensiveness and incomplete removal, easily causing secondary pollution, which are hence not environmental-friendly. Conventional microbial approaches are mostly used to treat a single contaminant in soils and lack high efficiency and specificity for combined contaminants. Genetically engineered microorganisms (GEMs) have emerged as a desired requirement of higher bioremediation efficiency for soils polluted with HMs and PAHs and environmental sustainability, which can provide a more eco-friendly and cost-effective strategy in comparison with some conventional techniques. This review comments the recent advances about successful bioremediation techniques and approaches for soil contaminated with HMs and/or PAHs by GEMs, and discusses some challenges in the simultaneous removal of HMs and PAHs from soil by designing multi-functional genetic engineering microorganisms (MFGEMs), such as improvement of higher efficiency, strict environmental conditions, and possible ecological risks. Also, the modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade combined contaminants at a faster rate are introduced, such as reasonable gene editing, metabolic pathway modification, and protoplast fusion. Although MFGEMs are more potent than the native microbes and can quickly adapt to combined contaminants in soils, the ecological risk of MFGEMs needs to be evaluated under a regulatory, safety, or costs benefit-driving system in a way of stratified regulation. Nevertheless, the innovation of genetic engineering to produce MFGEMs should be inspired for the welfare of successful bioremediation for soils contaminated with HMs and PAHs but it must be supervised by the public, authorities, and laws.
科研通智能强力驱动
Strongly Powered by AbleSci AI