United adversarial learning for liver tumor segmentation and detection of multi-modality non-contrast MRI

计算机科学 特征(语言学) 人工智能 特征选择 分割 特征提取 鉴别器 模式识别(心理学) 模态(人机交互) 磁共振成像 计算机视觉 放射科 医学 哲学 探测器 电信 语言学
作者
Jianfeng Zhao,Dengwang Li,Xiaojiao Xiao,F Accorsi,Harry Marshall,Tyler Cossetto,Dong-Keun Kim,Daniel F. McCarthy,Cameron Dawson,Stefan Knezevic,Bo Chen,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:73: 102154-102154 被引量:48
标识
DOI:10.1016/j.media.2021.102154
摘要

Abstract Simultaneous segmentation and detection of liver tumors (hemangioma and hepatocellular carcinoma (HCC)) by using multi-modality non-contrast magnetic resonance imaging (NCMRI) are crucial for the clinical diagnosis. However, it is still a challenging task due to: (1) the HCC information on NCMRI is insufficient makes extraction of liver tumors feature difficult; (2) diverse imaging characteristics in multi-modality NCMRI causes feature fusion and selection difficult; (3) no specific information between hemangioma and HCC on NCMRI cause liver tumors detection difficult. In this study, we propose a united adversarial learning framework (UAL) for simultaneous liver tumors segmentation and detection using multi-modality NCMRI. The UAL first utilizes a multi-view aware encoder to extract multi-modality NCMRI information for liver tumor segmentation and detection. In this encoder, a novel edge dissimilarity feature pyramid module is designed to facilitate the complementary multi-modality feature extraction. Secondly, the newly designed fusion and selection channel is used to fuse the multi-modality feature and make the decision of the feature selection. Then, the proposed mechanism of coordinate sharing with padding integrates the multi-task of segmentation and detection so that it enables multi-task to perform united adversarial learning in one discriminator. Lastly, an innovative multi-phase radiomics guided discriminator exploits the clear and specific tumor information to improve the multi-task performance via the adversarial learning strategy. The UAL is validated in corresponding multi-modality NCMRI (i.e. T1FS pre-contrast MRI, T2FS MRI, and DWI) and three phases contrast-enhanced MRI of 255 clinical subjects. The experiments show that UAL gains high performance with the dice similarity coefficient of 83.63%, the pixel accuracy of 97.75%, the intersection-over-union of 81.30%, the sensitivity of 92.13%, the specificity of 93.75%, and the detection accuracy of 92.94%, which demonstrate that UAL has great potential in the clinical diagnosis of liver tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
1秒前
ludong_0应助科研通管家采纳,获得10
1秒前
1秒前
缓慢如南应助科研通管家采纳,获得10
1秒前
缓慢如南应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
ludong_0应助科研通管家采纳,获得10
1秒前
缓慢如南应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
古往今来应助科研通管家采纳,获得20
2秒前
ding应助科研通管家采纳,获得50
2秒前
李健应助科研通管家采纳,获得30
2秒前
F503完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
哆啦豆豆关注了科研通微信公众号
2秒前
语青发布了新的文献求助10
3秒前
好好工作完成签到,获得积分20
3秒前
星星完成签到,获得积分10
4秒前
嘿嘿嘿发布了新的文献求助10
4秒前
小徐801完成签到,获得积分10
4秒前
吴向宽发布了新的文献求助10
4秒前
maz123456发布了新的文献求助10
4秒前
4秒前
CodeCraft应助乐观若烟采纳,获得30
4秒前
N型半导体发布了新的文献求助10
4秒前
erhan7发布了新的文献求助10
4秒前
5秒前
华仔应助CC采纳,获得10
5秒前
可飞完成签到,获得积分10
5秒前
5秒前
tyj完成签到,获得积分10
5秒前
bioglia完成签到,获得积分10
6秒前
6秒前
qaa2274278941完成签到,获得积分20
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582