United adversarial learning for liver tumor segmentation and detection of multi-modality non-contrast MRI

计算机科学 特征(语言学) 人工智能 特征选择 分割 特征提取 鉴别器 模式识别(心理学) 模态(人机交互) 磁共振成像 计算机视觉 放射科 医学 哲学 探测器 电信 语言学
作者
Jianfeng Zhao,Dengwang Li,Xiaojiao Xiao,F Accorsi,Harry Marshall,Tyler Cossetto,Dong-Keun Kim,Daniel F. McCarthy,Cameron Dawson,Stefan Knezevic,Bo Chen,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:73: 102154-102154 被引量:48
标识
DOI:10.1016/j.media.2021.102154
摘要

Abstract Simultaneous segmentation and detection of liver tumors (hemangioma and hepatocellular carcinoma (HCC)) by using multi-modality non-contrast magnetic resonance imaging (NCMRI) are crucial for the clinical diagnosis. However, it is still a challenging task due to: (1) the HCC information on NCMRI is insufficient makes extraction of liver tumors feature difficult; (2) diverse imaging characteristics in multi-modality NCMRI causes feature fusion and selection difficult; (3) no specific information between hemangioma and HCC on NCMRI cause liver tumors detection difficult. In this study, we propose a united adversarial learning framework (UAL) for simultaneous liver tumors segmentation and detection using multi-modality NCMRI. The UAL first utilizes a multi-view aware encoder to extract multi-modality NCMRI information for liver tumor segmentation and detection. In this encoder, a novel edge dissimilarity feature pyramid module is designed to facilitate the complementary multi-modality feature extraction. Secondly, the newly designed fusion and selection channel is used to fuse the multi-modality feature and make the decision of the feature selection. Then, the proposed mechanism of coordinate sharing with padding integrates the multi-task of segmentation and detection so that it enables multi-task to perform united adversarial learning in one discriminator. Lastly, an innovative multi-phase radiomics guided discriminator exploits the clear and specific tumor information to improve the multi-task performance via the adversarial learning strategy. The UAL is validated in corresponding multi-modality NCMRI (i.e. T1FS pre-contrast MRI, T2FS MRI, and DWI) and three phases contrast-enhanced MRI of 255 clinical subjects. The experiments show that UAL gains high performance with the dice similarity coefficient of 83.63%, the pixel accuracy of 97.75%, the intersection-over-union of 81.30%, the sensitivity of 92.13%, the specificity of 93.75%, and the detection accuracy of 92.94%, which demonstrate that UAL has great potential in the clinical diagnosis of liver tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助糖糖采纳,获得10
1秒前
2秒前
2秒前
时梦冉完成签到 ,获得积分10
3秒前
爆米花应助Robert采纳,获得10
3秒前
5秒前
Avvei发布了新的文献求助10
6秒前
温柔凌兰发布了新的文献求助10
6秒前
英吉利25发布了新的文献求助10
6秒前
6秒前
虚幻寄文完成签到 ,获得积分10
8秒前
8秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
汤沧海发布了新的文献求助10
11秒前
Faye完成签到,获得积分10
12秒前
脑洞疼应助Danna采纳,获得10
13秒前
大吱吱发布了新的文献求助10
13秒前
SciGPT应助拼搏的似狮采纳,获得10
14秒前
14秒前
爆米花应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
浮游应助科研通管家采纳,获得30
15秒前
15秒前
张耀方发布了新的文献求助10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得30
15秒前
15秒前
核桃应助科研通管家采纳,获得10
15秒前
核桃应助科研通管家采纳,获得10
15秒前
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
田様应助Markus采纳,获得30
16秒前
汤沧海完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Selected papers II : with commentaries 1000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062637
求助须知:如何正确求助?哪些是违规求助? 4286396
关于积分的说明 13356994
捐赠科研通 4104212
什么是DOI,文献DOI怎么找? 2247379
邀请新用户注册赠送积分活动 1252944
关于科研通互助平台的介绍 1183868