Depth of Anesthesia Monitoring Method Based on EEG Microstate Analysis and Hidden Markov Model

地方政府 隐马尔可夫模型 脑电图 计算机科学 人工智能 聚类分析 模式识别(心理学) 语音识别 心理学 神经科学
作者
Lichengxi Si,Zhian Liu,Gang Wang
标识
DOI:10.1109/prml52754.2021.9520709
摘要

Electroencephalogram (EEG) microstate analysis is an important emerging method that can classify continuous multichannel EEG signals into a limited number of microstates through clustering. Microstate analysis combines the time and space information of EEG, which can reflect important transformation process of high-level cognitive functions in the brain. In recent years, Microstate analysis has made great progress in the research of depth of anesthesia (DOA) monitoring. In this paper, a new DOA monitoring algorithm is designed by combining microstate sequence and hidden Markov model (HMM). The trained Hidden Markov Model shows the information of brain nerve activity hidden in the microstate sequence, which can effectively distinguish the mental states of different DOAs, thereby realizing the corresponding DOA classification. The experimental dataset was obtained from an open-access section of the University of Cambridge Data Repository, which contains EEG data from 20 healthy subjects. During propofol injection, the brain states of the subjects were divided into four conditions: baseline (BS), mild sedation (ML), moderate sedation (MD), and the recovery stage (RC). The algorithm classified BS and ML, BS and MD, ML and MD with the accuracy rates of 71.40%, 73.48%, 67.75% respectively. This shows that the microstate analysis has great application potential in the study of anesthesia. Hidden Markov model training for microstate sequences can become a new research direction for DOA monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玻璃杯完成签到,获得积分20
3秒前
6秒前
传奇3应助lyn采纳,获得10
7秒前
8秒前
8秒前
bibabiu完成签到,获得积分10
10秒前
yck发布了新的文献求助10
11秒前
大美美完成签到,获得积分10
12秒前
12秒前
斯文钢笔完成签到 ,获得积分10
13秒前
N型半导体发布了新的文献求助10
13秒前
zyyyy完成签到 ,获得积分10
14秒前
佐小叶发布了新的文献求助10
14秒前
Owen应助炙热的妙梦采纳,获得10
14秒前
14秒前
15秒前
17秒前
情怀应助N型半导体采纳,获得10
17秒前
17秒前
yck完成签到,获得积分10
18秒前
18秒前
xxj发布了新的文献求助10
19秒前
不安的伯云完成签到,获得积分10
20秒前
木叶完成签到,获得积分10
21秒前
Unshouable完成签到,获得积分10
22秒前
西门访天发布了新的文献求助10
23秒前
千跃应助科研通管家采纳,获得20
23秒前
无花果应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
凡迪亚比应助科研通管家采纳,获得20
23秒前
23秒前
Owen应助科研通管家采纳,获得10
23秒前
23秒前
默默筮发布了新的文献求助10
24秒前
田yg完成签到,获得积分10
25秒前
satan9发布了新的文献求助10
28秒前
西门访天完成签到,获得积分10
29秒前
干饭大王应助王欧尼采纳,获得10
29秒前
乐乐应助牛牛眉目采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511740
关于积分的说明 11159404
捐赠科研通 3246305
什么是DOI,文献DOI怎么找? 1793370
邀请新用户注册赠送积分活动 874364
科研通“疑难数据库(出版商)”最低求助积分说明 804357