Depth of Anesthesia Monitoring Method Based on EEG Microstate Analysis and Hidden Markov Model

地方政府 隐马尔可夫模型 脑电图 计算机科学 人工智能 聚类分析 模式识别(心理学) 语音识别 心理学 神经科学
作者
Lichengxi Si,Zhian Liu,Gang Wang
标识
DOI:10.1109/prml52754.2021.9520709
摘要

Electroencephalogram (EEG) microstate analysis is an important emerging method that can classify continuous multichannel EEG signals into a limited number of microstates through clustering. Microstate analysis combines the time and space information of EEG, which can reflect important transformation process of high-level cognitive functions in the brain. In recent years, Microstate analysis has made great progress in the research of depth of anesthesia (DOA) monitoring. In this paper, a new DOA monitoring algorithm is designed by combining microstate sequence and hidden Markov model (HMM). The trained Hidden Markov Model shows the information of brain nerve activity hidden in the microstate sequence, which can effectively distinguish the mental states of different DOAs, thereby realizing the corresponding DOA classification. The experimental dataset was obtained from an open-access section of the University of Cambridge Data Repository, which contains EEG data from 20 healthy subjects. During propofol injection, the brain states of the subjects were divided into four conditions: baseline (BS), mild sedation (ML), moderate sedation (MD), and the recovery stage (RC). The algorithm classified BS and ML, BS and MD, ML and MD with the accuracy rates of 71.40%, 73.48%, 67.75% respectively. This shows that the microstate analysis has great application potential in the study of anesthesia. Hidden Markov model training for microstate sequences can become a new research direction for DOA monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
如晴完成签到,获得积分10
刚刚
平淡的芯阳完成签到 ,获得积分10
刚刚
JonyiCheng发布了新的文献求助10
1秒前
1秒前
帅气的乘云完成签到,获得积分10
1秒前
吃点红糖馒头完成签到,获得积分10
2秒前
良月二十一完成签到 ,获得积分10
2秒前
斯文败类应助听粥采纳,获得10
3秒前
可爱的函函应助strings采纳,获得10
3秒前
3秒前
仚屳完成签到,获得积分10
3秒前
Naixi完成签到,获得积分10
3秒前
今后应助HU采纳,获得10
3秒前
su完成签到 ,获得积分10
5秒前
平淡的依白完成签到,获得积分20
5秒前
xinchengzhu关注了科研通微信公众号
5秒前
爱静静应助tao采纳,获得10
6秒前
iNk应助Rebekah采纳,获得10
6秒前
HopeStar完成签到,获得积分10
7秒前
树叶有专攻完成签到,获得积分10
7秒前
7秒前
田様应助Mia采纳,获得20
7秒前
所所应助吃点红糖馒头采纳,获得10
7秒前
今后应助PSCs采纳,获得10
7秒前
8秒前
duguqiubai4发布了新的文献求助10
8秒前
独特的沛凝完成签到,获得积分10
10秒前
思源应助淇淇怪怪采纳,获得10
10秒前
领导范儿应助徐慕源采纳,获得10
10秒前
听粥完成签到,获得积分10
11秒前
高高迎蓉完成签到,获得积分10
11秒前
豆花完成签到,获得积分10
11秒前
SYLH应助风趣的无剑采纳,获得10
11秒前
悲伤水凝胶完成签到,获得积分10
11秒前
鲸鱼完成签到,获得积分10
13秒前
huangqinxue完成签到,获得积分10
13秒前
14秒前
14秒前
Tina完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678