Data-driven district energy management with surrogate models and deep reinforcement learning

强化学习 钢筋 能源管理 人工智能 计算机科学 能量(信号处理) 工程类 数学 结构工程 统计
作者
Giuseppe Pinto,Davide Deltetto,Alfonso Capozzoli
出处
期刊:Applied Energy [Elsevier BV]
卷期号:304: 117642-117642 被引量:35
标识
DOI:10.1016/j.apenergy.2021.117642
摘要

• LSTM models and DRL provide an effective data-driven district energy management. • The proposed approach reduces computational cost compared to a forward modelling. • The coordinated management achieves 23% of peak reduction compared to baseline RBC. • The DRL controller is capable to optimize comfort, cost and peaks at district level. Demand side management at district scale plays a crucial role in the energy transition process, being an ideal candidate to balance the needs of both users and grid, by managing the volatility of renewable sources and increasing energy flexibility. The presented study aims to explore the benefits of a coordinated approach for the energy management of a cluster of buildings to optimise the electrical demand profiles and provide services to the grid without penalising indoor comfort conditions. The proposed methodology makes use of a fully data-driven control scheme which exploits Long Short-Term Memory (LSTM) Neural Networks, and Deep Reinforcement Learning (DRL). A simulation environment is introduced to train a DRL controller to manage the operation of heat pumps and chilled and domestic hot water storage for a cluster of four buildings. LSTM models are trained with synthetic data set created in EnergyPlus and are integrated into simulation environment to evaluate the indoor temperature dynamics in each building. The developed DRL controller is tested against a manually optimised Rule Based Controller (RBC). Results show that the DRL algorithm is able to reduce the overall cluster electricity costs, while decreasing the peak energy demand by 23% and the Peak to Average Ratio (PAR) by 20%, without penalizing indoor temperature control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cloverdown完成签到,获得积分10
刚刚
传奇3应助ABU采纳,获得10
刚刚
askaga发布了新的文献求助10
1秒前
小柠发布了新的文献求助10
1秒前
小赵完成签到 ,获得积分0
2秒前
2秒前
2秒前
wcj发布了新的文献求助10
2秒前
www完成签到,获得积分10
3秒前
ZXY完成签到 ,获得积分10
3秒前
3秒前
1111完成签到 ,获得积分10
4秒前
充电宝应助小底采纳,获得10
4秒前
华仔应助顺利秋灵采纳,获得10
4秒前
琦琦完成签到 ,获得积分10
4秒前
4秒前
4秒前
深情安青应助伊凡采纳,获得10
4秒前
Chaimengdi发布了新的文献求助10
5秒前
小乌龟完成签到,获得积分10
5秒前
5秒前
5秒前
鸣笛应助彩色垣采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
天天天晴完成签到,获得积分10
7秒前
积极的誉完成签到,获得积分10
7秒前
我要学习发布了新的文献求助10
7秒前
7秒前
wcj完成签到,获得积分20
8秒前
8秒前
zxm完成签到,获得积分10
8秒前
ZSFL发布了新的文献求助10
8秒前
Thea完成签到 ,获得积分10
8秒前
眼睛大的薯片完成签到,获得积分10
9秒前
9秒前
KATHY完成签到,获得积分20
10秒前
棋士应助爱笑煎蛋采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950593
求助须知:如何正确求助?哪些是违规求助? 3495971
关于积分的说明 11080135
捐赠科研通 3226361
什么是DOI,文献DOI怎么找? 1783812
邀请新用户注册赠送积分活动 867916
科研通“疑难数据库(出版商)”最低求助积分说明 800977