Data-driven district energy management with surrogate models and deep reinforcement learning

强化学习 钢筋 能源管理 人工智能 计算机科学 能量(信号处理) 工程类 数学 结构工程 统计
作者
Giuseppe Pinto,Davide Deltetto,Alfonso Capozzoli
出处
期刊:Applied Energy [Elsevier]
卷期号:304: 117642-117642 被引量:35
标识
DOI:10.1016/j.apenergy.2021.117642
摘要

• LSTM models and DRL provide an effective data-driven district energy management. • The proposed approach reduces computational cost compared to a forward modelling. • The coordinated management achieves 23% of peak reduction compared to baseline RBC. • The DRL controller is capable to optimize comfort, cost and peaks at district level. Demand side management at district scale plays a crucial role in the energy transition process, being an ideal candidate to balance the needs of both users and grid, by managing the volatility of renewable sources and increasing energy flexibility. The presented study aims to explore the benefits of a coordinated approach for the energy management of a cluster of buildings to optimise the electrical demand profiles and provide services to the grid without penalising indoor comfort conditions. The proposed methodology makes use of a fully data-driven control scheme which exploits Long Short-Term Memory (LSTM) Neural Networks, and Deep Reinforcement Learning (DRL). A simulation environment is introduced to train a DRL controller to manage the operation of heat pumps and chilled and domestic hot water storage for a cluster of four buildings. LSTM models are trained with synthetic data set created in EnergyPlus and are integrated into simulation environment to evaluate the indoor temperature dynamics in each building. The developed DRL controller is tested against a manually optimised Rule Based Controller (RBC). Results show that the DRL algorithm is able to reduce the overall cluster electricity costs, while decreasing the peak energy demand by 23% and the Peak to Average Ratio (PAR) by 20%, without penalizing indoor temperature control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
JL完成签到,获得积分10
2秒前
pentayouth发布了新的文献求助10
2秒前
Orange应助科研通管家采纳,获得10
3秒前
苏卿应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
Migue应助科研通管家采纳,获得10
3秒前
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得30
3秒前
Orange应助科研通管家采纳,获得30
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
Jasper应助轻松子轩采纳,获得10
6秒前
科研通AI2S应助Hiihaa采纳,获得10
8秒前
liu发布了新的文献求助30
8秒前
谢之遥完成签到,获得积分10
9秒前
jkq发布了新的文献求助10
10秒前
希望天下0贩的0应助penguin采纳,获得10
11秒前
包容的忆灵完成签到 ,获得积分10
12秒前
席潮发布了新的文献求助10
14秒前
fmx完成签到,获得积分10
16秒前
17秒前
17秒前
聪明摩托完成签到,获得积分10
18秒前
大帅完成签到 ,获得积分10
21秒前
22秒前
22秒前
轻松子轩发布了新的文献求助10
23秒前
Ail完成签到,获得积分10
23秒前
wanci应助壮观静柏采纳,获得10
26秒前
高高的山兰完成签到 ,获得积分10
26秒前
席潮完成签到,获得积分10
28秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165336
求助须知:如何正确求助?哪些是违规求助? 2816343
关于积分的说明 7912340
捐赠科研通 2475963
什么是DOI,文献DOI怎么找? 1318480
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388