FedSky: An Efficient and Privacy-preserving Scheme for Federated Mobile Crowdsensing

计算机科学 拥挤感测 信息隐私 方案(数学) 移动设备 计算机安全 分布式计算 差别隐私 计算机网络 云计算
作者
Xichen Zhang,Rongxing Lu,Jun Shao,Fengwei Wang,Hui Zhu,Ali A. Ghorbani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jiot.2021.3109058
摘要

Mobile Crowdsensing (MCS) is a newly-emerged sensing paradigm where a large group of mobile workers collectively sense and share data for real-time services. However, one major problem that hinders the further development of MCS is the potential leakage of workers’ data privacy. In this paper, we integrate Federated Learning (FL) with MCS and introduce a novel sensing system called Federated Mobile Crowdsensing (F-MCS). In F-MCS, the workers can optimize the global model while keeping all the sensitive training data locally, thus ensuring their data privacy. Nevertheless, there are still two major issues in F-MCS. The first issue is that in F-MCS services, the workers are heterogeneous in terms of computational capacities and data resources. Hence, qualified workers should be appropriately selected to improve the efficiency of the training process. The second issue is that F-MCS is a cross-device FL system where the platform will finally get the global model after multiple training rounds. However, most privacy-preserving techniques are designed for cross-silo FL platforms, which cannot be applied to real-world F-MCS scenarios. To tackle the above problems, in this paper, we propose a privacy-preserving scheme for F-MCS, namely FedSky. Mainly, by extending the classic FedAvg algorithm, FedSky selects qualified workers based on constrained group skyline (CG-skyline) and securely aggregates model updates based on the homomorphic encryption technique. Comprehensive security analysis demonstrates the privacy-preservation of FedSky. Extensive experiments are conducted on an image classification task, where the comparison results validate the proposed scheme’s efficiency and effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万默完成签到 ,获得积分10
刚刚
阿诺发布了新的文献求助10
1秒前
yatou5651完成签到,获得积分10
1秒前
椰树椰汁完成签到,获得积分10
3秒前
mengli完成签到 ,获得积分10
3秒前
坚定龙猫完成签到,获得积分10
3秒前
平淡尔琴完成签到,获得积分10
3秒前
12345678发布了新的文献求助10
4秒前
深情安青应助入暖采纳,获得10
4秒前
4秒前
Mindray完成签到,获得积分10
4秒前
pp完成签到,获得积分10
4秒前
清风醉完成签到,获得积分10
4秒前
科研韭菜完成签到,获得积分10
5秒前
6秒前
更好的我完成签到,获得积分10
6秒前
无响应完成签到 ,获得积分10
7秒前
7秒前
嵇丹雪完成签到,获得积分10
8秒前
12345678完成签到,获得积分10
8秒前
无限草丛完成签到,获得积分10
8秒前
9秒前
lulalula完成签到,获得积分10
9秒前
matt发布了新的文献求助20
10秒前
1111发布了新的文献求助10
11秒前
小小月完成签到 ,获得积分10
11秒前
战战兢兢的失眠完成签到 ,获得积分10
11秒前
Supermao完成签到 ,获得积分10
12秒前
精灵夜雨完成签到,获得积分10
12秒前
gaojing完成签到,获得积分10
12秒前
信封完成签到 ,获得积分10
12秒前
魔幻大有完成签到,获得积分10
12秒前
图图完成签到,获得积分10
12秒前
zrw完成签到,获得积分10
13秒前
国郭完成签到,获得积分10
14秒前
弈心完成签到 ,获得积分10
14秒前
Yoo.完成签到,获得积分10
14秒前
标致的泥猴桃完成签到,获得积分10
14秒前
yeah.w完成签到,获得积分20
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249002
求助须知:如何正确求助?哪些是违规求助? 2892380
关于积分的说明 8271185
捐赠科研通 2560658
什么是DOI,文献DOI怎么找? 1389175
科研通“疑难数据库(出版商)”最低求助积分说明 651006
邀请新用户注册赠送积分活动 627869