面筋
谷蛋白
醇溶蛋白
化学
食品科学
小麦面筋
贮藏蛋白
生物化学
蛋白质亚单位
基因
作者
Xia Zhang,Mengyu Mu,Yu Tian,Jiaojiao Fu,Feng Jia,Qi Wang,Ying Liang,Jinshui Wang
标识
DOI:10.1016/j.jspr.2021.101897
摘要
Wheat post-harvest maturation induced baking and technological quality improvement through a series of biochemical and colloidal changes. Weak-, middle-, and strong-gluten wheat displayed varying gluten network structures that determined the flour ingredient formulations and processing conditions. However, the aggregation and structural properties of wheat with different gluten strengths post-harvest remain largely unexplored. In this study, we investigated changes in the aggregative properties of gluten protein, gluten composition, S–S content, network structure, and secondary structures of weak-, middle-, and strong-gluten wheat during post-harvest maturation. The results indicated that the macromolecular aggregation of gluten proteins was impaired in weak-gluten wheat, while it was enhanced for middle- and strong-gluten wheat during storage. Post-harvest maturation resulted in an increase in glutenin content and a decline in the gliadin and gliadin/glutenin ratio in middle- and strong-gluten wheat as well as a decreased glutenin content in weak-gluten wheat. Moreover, additional gluten subunits were observed in middle- and strong-gluten wheat, but no substantial change was observed in weak-gluten wheat with long storage times. The disulfide bond content of gluten protein for middle-gluten and strong-gluten gradually increased but declined for weak-gluten wheat. Secondary structure analysis of gluten indicated that post-harvest maturation caused the conversion of α-helix to random coil for weak-gluten wheat, β-turn and random coil to α-helix for middle-gluten wheat, and β-turns to α-helix for strong-gluten wheat, which led to a disordered structure for weak gluten and an ordered stable gluten network for middle- and strong-gluten. Thus, the increased S–S and α-helix content induced by post-harvest maturation enhanced the aggregation of gluten proteins for middle- and strong-gluten wheat, resulting in a denser network structure. Conversely, the decrease in the content of α-helix resulted in the existence of a looser gluten network structure for weak-gluten wheat during post-harvest maturation.
科研通智能强力驱动
Strongly Powered by AbleSci AI