已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A comprehensive review of loosening detection methods for threaded fasteners

锤子 螺栓连接 信号(编程语言) 打击乐器 人工智能 工程类 结构工程 计算机科学 声学 有限元法 物理 程序设计语言
作者
Jiayu Huang,Jianhua Liu,Hao Gong,Xinjian Deng
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:168: 108652-108652 被引量:112
标识
DOI:10.1016/j.ymssp.2021.108652
摘要

Loosening of threaded fasteners can cause preload decline, induce bolt fatigue fracture, and severely compromise the reliability of mechanical products. Loosening detection is an effective method for early prevention of severe loosening behaviour. This study classifies various detection methods into sensor-based, vision-based and percussion-based methods and systematically summarises their research progresses. The sensor-based method implants or sticks sensors on the mechanical structure with bolted joints, and achieves loosening detection by exploiting the variation on measurement parameters of sensors. It can be divided into explicit detection and implicit detection. The former requires accurate experimental calibration whereas the latter requires to extract sensitive loosening features. The percussion-based method applies a hammer to knock the mechanical structure and receives the audio signal. Like implicit sensor-based methods, loosening severity is evaluated by extracting sensitive features from the received audio signal. The vision-based method captures the images of threaded fasteners and calculates the rotational angle or the length of exposed bolt for loosening detection. The implicit sensor-based, percussion-based, and vision-based methods can only detect several discrete loosening states and be applied mainly to a single bolted joint. It is considered essential and significant to develop a self-powered sensor capable of signal wireless transmission and to conduct precise preload detection by establishing the quantitative relationship between loosening features and preloads using deep learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Q哈哈哈发布了新的文献求助10
刚刚
chuanyongcui发布了新的文献求助10
1秒前
juzitinghai完成签到,获得积分10
1秒前
CooDemon发布了新的文献求助10
3秒前
3秒前
灰色与青发布了新的文献求助10
4秒前
5秒前
觅柔完成签到,获得积分10
5秒前
yu完成签到,获得积分10
6秒前
6秒前
6秒前
两千完成签到,获得积分10
8秒前
9秒前
11秒前
廖其琪发布了新的文献求助10
11秒前
RAY1发布了新的文献求助10
12秒前
13秒前
冰棒比冰冰完成签到 ,获得积分10
14秒前
笨笨念文完成签到 ,获得积分10
14秒前
芜湖发布了新的文献求助10
14秒前
NexusExplorer应助Nature_Science采纳,获得10
15秒前
zhan20200503完成签到,获得积分10
15秒前
lay完成签到,获得积分10
17秒前
17秒前
木鱼大呆完成签到,获得积分10
18秒前
18秒前
长情无心完成签到,获得积分10
19秒前
zz完成签到,获得积分10
20秒前
20秒前
慕青应助廖其琪采纳,获得10
20秒前
芜湖完成签到,获得积分10
20秒前
生动丑应助科研通管家采纳,获得150
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
21秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384801
求助须知:如何正确求助?哪些是违规求助? 4507584
关于积分的说明 14028551
捐赠科研通 4417311
什么是DOI,文献DOI怎么找? 2426403
邀请新用户注册赠送积分活动 1419155
关于科研通互助平台的介绍 1397485