A comprehensive review of loosening detection methods for threaded fasteners

锤子 螺栓连接 信号(编程语言) 打击乐器 人工智能 工程类 结构工程 计算机科学 声学 有限元法 物理 程序设计语言
作者
Jiayu Huang,Jianhua Liu,Hao Gong,Xinjian Deng
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:168: 108652-108652 被引量:92
标识
DOI:10.1016/j.ymssp.2021.108652
摘要

Loosening of threaded fasteners can cause preload decline, induce bolt fatigue fracture, and severely compromise the reliability of mechanical products. Loosening detection is an effective method for early prevention of severe loosening behaviour. This study classifies various detection methods into sensor-based, vision-based and percussion-based methods and systematically summarises their research progresses. The sensor-based method implants or sticks sensors on the mechanical structure with bolted joints, and achieves loosening detection by exploiting the variation on measurement parameters of sensors. It can be divided into explicit detection and implicit detection. The former requires accurate experimental calibration whereas the latter requires to extract sensitive loosening features. The percussion-based method applies a hammer to knock the mechanical structure and receives the audio signal. Like implicit sensor-based methods, loosening severity is evaluated by extracting sensitive features from the received audio signal. The vision-based method captures the images of threaded fasteners and calculates the rotational angle or the length of exposed bolt for loosening detection. The implicit sensor-based, percussion-based, and vision-based methods can only detect several discrete loosening states and be applied mainly to a single bolted joint. It is considered essential and significant to develop a self-powered sensor capable of signal wireless transmission and to conduct precise preload detection by establishing the quantitative relationship between loosening features and preloads using deep learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦麦发布了新的文献求助10
刚刚
单纯晓绿完成签到,获得积分10
刚刚
Rr完成签到,获得积分20
1秒前
小郭发布了新的文献求助10
1秒前
iNk应助个性的友蕊采纳,获得10
2秒前
3秒前
6秒前
田様应助JIAO采纳,获得10
6秒前
7秒前
山生有杏完成签到,获得积分10
8秒前
9秒前
9秒前
sddfafd发布了新的文献求助10
9秒前
9秒前
小二郎应助贪玩的向梦采纳,获得10
10秒前
学习。。发布了新的文献求助10
11秒前
11秒前
Sky发布了新的文献求助10
12秒前
VV关闭了VV文献求助
13秒前
xxxxxn发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
车秋寒发布了新的文献求助10
15秒前
SciGPT应助小稻草人采纳,获得10
15秒前
16秒前
16秒前
19秒前
筱喜发布了新的文献求助10
19秒前
车秋寒完成签到,获得积分10
21秒前
22秒前
顾矜应助时尚的蘑菇采纳,获得30
22秒前
klwy完成签到,获得积分10
23秒前
丘比特应助jyee采纳,获得10
23秒前
小二郎应助科研狗不理采纳,获得10
23秒前
墨染青花发布了新的文献求助10
24秒前
bluelululu发布了新的文献求助10
25秒前
25秒前
子郁完成签到 ,获得积分10
25秒前
空洛发布了新的文献求助50
26秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464759
求助须知:如何正确求助?哪些是违规求助? 3058048
关于积分的说明 9059613
捐赠科研通 2748216
什么是DOI,文献DOI怎么找? 1507774
科研通“疑难数据库(出版商)”最低求助积分说明 696693
邀请新用户注册赠送积分活动 696340