Object Detection Based on Fusion of Sparse Point Cloud and Image Information

点云 聚类分析 最小边界框 人工智能 目标检测 计算机科学 计算机视觉 跳跃式监视 帧(网络) 点(几何) 移动机器人 对象(语法) 云数据库 激光雷达 分割 云计算 图像(数学) 机器人 数学 遥感 操作系统 地质学 电信 几何学
作者
Xiaobin Xu,Lei Zhang,Jian Yang,Chenfei Cao,Zhiying Tan,Minzhou Luo
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:17
标识
DOI:10.1109/tim.2021.3102739
摘要

With the rapid development of mobile robots, environmental perception based on a single sensor can hardly meet the task requirements of the robots for object detection and path planning in complex scenarios. In this article, an object detection fusion algorithm based on both the information of the LiDAR point cloud and the camera image is proposed. First, YOLOv4 is used to detect the objects in the image. Then, the point cloud is projected into the image, and the target point cloud is filtered out according to the range of the 2-D detection frame. The target point cloud is used to perform density clustering and generate the output of a bounding box with semantic labels. Meanwhile, the original point cloud data are processed by an improved four-neighborhood clustering algorithm based on the Euclidean distance and angle threshold to generate the output of another bounding box without semantic labels. Finally, the clusters obtained by different methods are fused and judged to produce the output of the final object detection results. The test using the KITTI dataset shows that the accuracy of the improved four-neighbor clustering algorithm is increased to 0.835. The final semantic segmentation results have an average positioning error of 0.033 and 0.073 m in the $x$ - and $y$ -directions. The average angular error of the vehicle direction is 0.90°. Compared with the other two types of point cloud segmentation networks, our approach has the highest accuracy and sufficient real-time performance, which can reach 9.96 Hz in the experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安安发布了新的文献求助10
1秒前
Ldq发布了新的文献求助10
1秒前
1秒前
驴小兔子发布了新的文献求助10
2秒前
Carol完成签到,获得积分10
2秒前
发发发完成签到,获得积分10
2秒前
2秒前
雍雍发布了新的文献求助10
2秒前
酷酷发布了新的文献求助10
3秒前
深情安青应助sanmu采纳,获得10
3秒前
JamesPei应助lei采纳,获得10
3秒前
4秒前
4秒前
4秒前
5秒前
悸沫发布了新的文献求助10
5秒前
鉨汏闫完成签到,获得积分10
6秒前
不能吃太饱完成签到,获得积分10
7秒前
春景当思完成签到,获得积分10
7秒前
甜甜玫瑰发布了新的文献求助10
7秒前
激动的涔发布了新的文献求助10
7秒前
9秒前
科研通AI2S应助简单采纳,获得10
9秒前
驴小兔子完成签到,获得积分10
9秒前
WFLLL完成签到,获得积分10
11秒前
美好的靖发布了新的文献求助30
11秒前
12秒前
13秒前
14秒前
提莫silence完成签到 ,获得积分10
14秒前
15秒前
sungyoo完成签到,获得积分10
15秒前
DARKNESS完成签到,获得积分10
15秒前
16秒前
科研通AI2S应助繁星与北斗采纳,获得10
16秒前
科目三应助柒_l采纳,获得10
16秒前
李健的粉丝团团长应助rui采纳,获得30
16秒前
17秒前
18秒前
18秒前
高分求助中
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
Artificial Intelligence: Foundations of ComputationalAgents, 3rd Edition Solution Manual and Instructor Resources 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308081
求助须知:如何正确求助?哪些是违规求助? 2941598
关于积分的说明 8504517
捐赠科研通 2616249
什么是DOI,文献DOI怎么找? 1429510
科研通“疑难数据库(出版商)”最低求助积分说明 663787
邀请新用户注册赠送积分活动 648720