皮克林乳液
乳状液
奶油
化学工程
蛋清
流变学
动态力学分析
食品工业
化学
材料科学
聚合物
色谱法
复合材料
有机化学
食品科学
工程类
作者
Ze Chen,Bing Cui,Xiaohan Guo,Bin Zhou,Shishuai Wang,Yaqiong Pei,Bin Li,Hongshan Liang
摘要
The waste of salted egg white resources has always been a serious problem in the food industry. In this current study, we report on a kind of Pickering emulsion system, which was stabilized by duck egg white nanogels (DEWNs) and sodium alginate (SA), followed by which this system was crosslinked by calcium carbonate (CaCO3 ) via controlling the gluconolactone (GDL) concentrations, aiming to open up a promising route for making full use of these protein resources.The droplet size of the emulsion exhibited a reduction with an increase in SA concentrations, indicating that higher negative charges and steric hindrance was useful for a stable emulsion system. Meanwhile, the result of rheology measurement showed that storage modulus (G') values were higher than loss modulus (G″) values of the samples at higher GDL concentration, revealing the formation of elastic gel-like networks in the system, which was fabricated by SA and Ca2+ released by the CaCO3 particles. The gel-like network structure in the continuous phase improved both the freeze-thaw and thermal stability of the obtained Pickering emulsion system. Encouragingly, the Pickering high internal phase emulsions (HIPEs, φ = 0.75) stabilized by DEWN/SA3 -GDL3 were prepared, which could be stored at 4 °C for at least 30 days without oiling-off and creaming.These findings not only develop a green ultra-stable Pickering emulsion system but also extend the potential commercial applications of duck egg white proteins in the food, cosmetics, and pharmaceutical industries. © 2021 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI