Using evasins to target the chemokine network in inflammation

趋化因子受体 趋化因子 CCL21型 CCL13型 生物 免疫学 炎症
作者
Shoumo Bhattacharya,Akane Kawamura
出处
期刊:Advances in protein chemistry and structural biology 卷期号:: 1-38 被引量:8
标识
DOI:10.1016/bs.apcsb.2019.09.003
摘要

Inflammation, is driven by a network comprising cytokines, chemokines, their target receptors and leukocytes, and is a major pathologic mechanism that adversely affects organ function in diverse human diseases. Despite being supported by substantial target validation, no successful anti-chemokine therapeutic to treat inflammatory disease has yet been developed. This is in part because of the robustness of the chemokine network, which emerges from a large total chemokine load in disease, promiscuous expression of receptors on leukocytes, promiscuous and synergistic interactions between chemokines and receptors, and feedforward loops created by secretion of chemokines by leukocytes themselves. Many parasites, including viruses, helminths and ticks, evade the chemokine network by producing proteins that bind promiscuously to chemokines or their receptors. Evasins - three small glycoproteins identified in the saliva of the brown dog tick - bind multiple chemokines, and are active in several animal models of inflammatory disease. Over 50 evasin homologs have recently been identified from diverse tick species. Characterization of the chemokine binding patterns of evasins show that several have anti-chemokine activities that extend substantially beyond those previously described. These studies indicate that evasins function at the site of the tick bite by reducing total chemokine load. This not only reduces chemokine signaling to receptors, but also interrupts feedforward loops, thus disabling the chemokine network. Taking the lead from nature, a goal for the development of new anti-chemokine therapeutics would be to reduce the total chemokine load in disease. This could be achieved by administering appropriate evasin combinations or by smaller peptides that mimic evasin action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haokeyan完成签到,获得积分10
刚刚
1秒前
MIKUKU发布了新的文献求助10
1秒前
认真金鱼发布了新的文献求助10
1秒前
今后应助zhangfuchao采纳,获得10
2秒前
学习猴发布了新的文献求助10
2秒前
顺利毕业发布了新的文献求助20
3秒前
方赫然完成签到,获得积分0
5秒前
flymove发布了新的文献求助10
5秒前
科研民工完成签到,获得积分20
7秒前
8秒前
8秒前
科研小白完成签到,获得积分10
9秒前
ESC惠子子子子子完成签到 ,获得积分10
9秒前
尔尔发布了新的文献求助10
9秒前
tsy完成签到 ,获得积分10
9秒前
阿月完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
夏侯绮山完成签到,获得积分10
13秒前
大个应助guyu采纳,获得10
14秒前
15秒前
姜姜姜应助一定按时睡觉采纳,获得10
15秒前
doubles完成签到,获得积分10
15秒前
loin完成签到,获得积分10
15秒前
byq完成签到,获得积分20
15秒前
阿月发布了新的文献求助10
15秒前
wanci应助强健的电源采纳,获得10
16秒前
David完成签到,获得积分10
17秒前
呆萌千凝发布了新的文献求助10
17秒前
何去何从完成签到,获得积分10
17秒前
18秒前
李爱国应助壮观复天采纳,获得10
19秒前
热心天佑完成签到,获得积分10
19秒前
ding应助番茄酱采纳,获得10
20秒前
木木发布了新的文献求助10
21秒前
21秒前
桐桐应助史蒂芬·周采纳,获得10
22秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311924
求助须知:如何正确求助?哪些是违规求助? 2944704
关于积分的说明 8520803
捐赠科研通 2620313
什么是DOI,文献DOI怎么找? 1432777
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650077