伊辛模型
蒙特卡罗方法
形式主义(音乐)
统计物理中的蒙特卡罗方法
统计物理学
杠杆(统计)
混合蒙特卡罗
蒙特卡罗分子模拟
计算机科学
动态蒙特卡罗方法
采用蒙地卡罗积分法
应用数学
算法
马尔科夫蒙特卡洛
数学
物理
人工智能
艺术
统计
视觉艺术
音乐剧
作者
Johann Ostmeyer,Evan Berkowitz,Thomas Luu,Marcus Petschlies,Ferenc Pittler
标识
DOI:10.1016/j.cpc.2021.107978
摘要
The Ising model is a simple statistical model for ferromagnetism. There are analytic solutions for low dimensions and very efficient Monte Carlo methods, such as cluster algorithms, for simulating this model in special cases. However most approaches do not generalise to arbitrary lattices and couplings. We present a formalism that allows one to apply Hybrid Monte Carlo (HMC) simulations to the Ising model, demonstrating how a system with discrete degrees of freedom can be simulated with continuous variables. Because of the flexibility of HMC, our formalism is easily generalizable to arbitrary modifications of the model, creating a route to leverage advanced algorithms such as shift preconditioners and multi-level methods, developed in conjunction with HMC.
科研通智能强力驱动
Strongly Powered by AbleSci AI