PAGE-Net: Interpretable and Integrative Deep Learning for Survival Analysis Using Histopathological Images and Genomic Data

人工智能 计算机科学 网(多面体) 深度学习 模式识别(心理学) 计算生物学 生物 数学 几何学
作者
Jie Hao,Sai Kosaraju,Nelson Zange Tsaku,Dae Hyun Song,Mingon Kang
出处
期刊:Biocomputing 卷期号:: 355-366 被引量:58
标识
DOI:10.1142/9789811215636_0032
摘要

The integration of multi-modal data, such as histopathological images and genomic data, is essential for understanding cancer heterogeneity and complexity for personalized treatments, as well as for enhancing survival predictions in cancer study. Histopathology, as a clinical gold-standard tool for diagnosis and prognosis in cancers, allows clinicians to make precise decisions on therapies, whereas high-throughput genomic data have been investigated to dissect the genetic mechanisms of cancers. We propose a biologically interpretable deep learning model (PAGE-Net) that integrates histopathological images and genomic data, not only to improve survival prediction, but also to identify genetic and histopathological patterns that cause different survival rates in patients. PAGE-Net consists of pathology/genome/demography-specific layers, each of which provides comprehensive biological interpretation. In particular, we propose a novel patch-wise texture-based convolutional neural network, with a patch aggregation strategy, to extract global survival-discriminative features, without manual annotation for the pathology-specific layers. We adapted the pathway-based sparse deep neural network, named Cox-PASNet, for the genome-specific layers. The proposed deep learning model was assessed with the histopathological images and the gene expression data of Glioblastoma Multiforme (GBM) at The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA). PAGE-Net achieved a C-index of 0.702, which is higher than the results achieved with only histopathological images (0.509) and Cox-PASNet (0.640). More importantly, PAGE-Net can simultaneously identify histopathological and genomic prognostic factors associated with patients survivals. The source code of PAGE-Net is publicly available at https://github.com/DataX-JieHao/PAGE-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘应助guofd采纳,获得10
刚刚
2秒前
5秒前
Sara完成签到,获得积分10
5秒前
爱吃饼干的土拨鼠完成签到,获得积分10
7秒前
王蓉发布了新的文献求助10
7秒前
9秒前
9秒前
10秒前
12秒前
q12发布了新的文献求助10
13秒前
xiewuhua发布了新的文献求助50
13秒前
tomato发布了新的文献求助10
14秒前
14秒前
14秒前
高大的稀完成签到 ,获得积分10
15秒前
16秒前
研友_LJGOan发布了新的文献求助10
17秒前
19秒前
20秒前
科研通AI2S应助踢踢采纳,获得10
21秒前
paopao完成签到,获得积分10
21秒前
璐璐发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
没有稗子完成签到 ,获得积分10
25秒前
paperSCI发布了新的文献求助10
25秒前
完美世界应助端庄的秋翠采纳,获得10
26秒前
彭于彦祖应助QIQI采纳,获得30
26秒前
羊咩咩发布了新的文献求助10
26秒前
潇洒完成签到,获得积分10
26秒前
璇222发布了新的文献求助10
26秒前
深情安青应助科研通管家采纳,获得10
28秒前
prosperp应助科研通管家采纳,获得10
28秒前
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
prosperp应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416055
求助须知:如何正确求助?哪些是违规求助? 3017751
关于积分的说明 8882444
捐赠科研通 2705345
什么是DOI,文献DOI怎么找? 1483501
科研通“疑难数据库(出版商)”最低求助积分说明 685751
邀请新用户注册赠送积分活动 680771