Generalizable cone beam CT esophagus segmentation using physics-based data augmentation

分割 锥束ct 人工智能 Sørensen–骰子系数 食管 工件(错误) 计算机科学 计算机视觉 模式识别(心理学) 物理 图像分割 医学 放射科 计算机断层摄影术 外科
作者
Sadegh Alam,Qingfeng Li,Pengpeng Zhang,Siyuan Zhang,Saad Nadeem
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (6): 065008-065008 被引量:14
标识
DOI:10.1088/1361-6560/abe2eb
摘要

Automated segmentation of the esophagus is critical in image-guided/adaptive radiotherapy of lung cancer to minimize radiation-induced toxicities such as acute esophagitis. We have developed a semantic physics-based data augmentation method for segmenting the esophagus in both planning CT (pCT) and cone beam CT (CBCT) using 3D convolutional neural networks. One hundred and ninety-one cases with their pCTs and CBCTs from four independent datasets were used to train a modified 3D U-Net architecture and a multi-objective loss function specifically designed for soft-tissue organs such as the esophagus. Scatter artifacts and noises were extracted from week-1 CBCTs using a power-law adaptive histogram equalization method and induced to the corresponding pCT were reconstructed using CBCT reconstruction parameters. Moreover, we leveraged physics-based artifact induction in pCTs to drive the esophagus segmentation in real weekly CBCTs. Segmentations were evaluated using the geometric Dice coefficient and Hausdorff distance as well as dosimetrically using mean esophagus dose and D 5cc. Due to the physics-based data augmentation, our model trained just on the synthetic CBCTs was robust and generalizable enough to also produce state-of-the-art results on the pCTs and CBCTs, achieving Dice overlaps of 0.81 and 0.74, respectively. It is concluded that our physics-based data augmentation spans the realistic noise/artifact spectrum across patient CBCT/pCT data and can generalize well across modalities, eventually improving the accuracy of treatment setup and response analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分10
1秒前
LL完成签到,获得积分10
1秒前
丘比特应助水123采纳,获得10
1秒前
阳光的梦寒完成签到 ,获得积分10
1秒前
1秒前
1秒前
紧张的冷卉完成签到,获得积分10
2秒前
2秒前
winifred完成签到 ,获得积分10
3秒前
3秒前
传奇3应助shadow采纳,获得10
4秒前
5秒前
畅快雁山完成签到,获得积分10
5秒前
科研通AI6应助科研懒狗采纳,获得10
5秒前
zcx完成签到,获得积分10
5秒前
jeopardy完成签到,获得积分10
5秒前
5秒前
邹帅发布了新的文献求助10
6秒前
失眠依珊发布了新的文献求助10
6秒前
wshwx完成签到,获得积分10
6秒前
HYLynn完成签到,获得积分10
6秒前
6秒前
6秒前
小豆完成签到,获得积分10
7秒前
淡淡友瑶完成签到,获得积分10
7秒前
Mmmmarys完成签到,获得积分10
7秒前
jubai应助聪慧的馒头mu采纳,获得10
8秒前
8秒前
jubai应助聪慧的馒头mu采纳,获得10
8秒前
大个应助飘逸数据线采纳,获得10
9秒前
科研完成签到,获得积分10
9秒前
哈哈完成签到,获得积分20
9秒前
9秒前
qfly123完成签到,获得积分10
9秒前
9秒前
wang完成签到,获得积分10
10秒前
10秒前
furin001完成签到,获得积分10
10秒前
2424完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654