Generalizable cone beam CT esophagus segmentation using physics-based data augmentation

分割 锥束ct 人工智能 Sørensen–骰子系数 食管 工件(错误) 计算机科学 计算机视觉 模式识别(心理学) 物理 图像分割 医学 放射科 计算机断层摄影术 外科
作者
Sadegh Alam,Qingfeng Li,Pengpeng Zhang,Siyuan Zhang,Saad Nadeem
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (6): 065008-065008 被引量:14
标识
DOI:10.1088/1361-6560/abe2eb
摘要

Automated segmentation of the esophagus is critical in image-guided/adaptive radiotherapy of lung cancer to minimize radiation-induced toxicities such as acute esophagitis. We have developed a semantic physics-based data augmentation method for segmenting the esophagus in both planning CT (pCT) and cone beam CT (CBCT) using 3D convolutional neural networks. One hundred and ninety-one cases with their pCTs and CBCTs from four independent datasets were used to train a modified 3D U-Net architecture and a multi-objective loss function specifically designed for soft-tissue organs such as the esophagus. Scatter artifacts and noises were extracted from week-1 CBCTs using a power-law adaptive histogram equalization method and induced to the corresponding pCT were reconstructed using CBCT reconstruction parameters. Moreover, we leveraged physics-based artifact induction in pCTs to drive the esophagus segmentation in real weekly CBCTs. Segmentations were evaluated using the geometric Dice coefficient and Hausdorff distance as well as dosimetrically using mean esophagus dose and D 5cc. Due to the physics-based data augmentation, our model trained just on the synthetic CBCTs was robust and generalizable enough to also produce state-of-the-art results on the pCTs and CBCTs, achieving Dice overlaps of 0.81 and 0.74, respectively. It is concluded that our physics-based data augmentation spans the realistic noise/artifact spectrum across patient CBCT/pCT data and can generalize well across modalities, eventually improving the accuracy of treatment setup and response analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Merciful完成签到 ,获得积分10
刚刚
洪艳完成签到,获得积分10
1秒前
身柏关注了科研通微信公众号
1秒前
2秒前
2秒前
研友_VZG7GZ应助橙子采纳,获得10
2秒前
yy发布了新的文献求助10
2秒前
2秒前
轻松囧发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
Akim应助何小芳采纳,获得10
4秒前
星苒发布了新的文献求助10
4秒前
炙热百川发布了新的文献求助10
5秒前
无敌咖啡豆完成签到,获得积分10
5秒前
5秒前
萍苹平完成签到,获得积分10
5秒前
英俊的铭应助rqtq2采纳,获得10
5秒前
John完成签到,获得积分10
5秒前
范拽拽发布了新的文献求助10
6秒前
简单的哲瀚完成签到,获得积分10
6秒前
方方完成签到,获得积分10
6秒前
6秒前
www发布了新的文献求助10
7秒前
英俊的铭应助迷人书蝶采纳,获得10
8秒前
SMZ应助温暖的鸿采纳,获得20
8秒前
8秒前
zhang-leo发布了新的文献求助10
8秒前
娜写年华完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
NexusExplorer应助明理瑾瑜采纳,获得10
9秒前
赘婿应助沉静幻柏采纳,获得10
10秒前
研友_VZG7GZ应助wwk采纳,获得10
10秒前
11秒前
11秒前
轻松囧完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807