Generalizable cone beam CT esophagus segmentation using physics-based data augmentation

分割 锥束ct 人工智能 Sørensen–骰子系数 食管 工件(错误) 计算机科学 计算机视觉 模式识别(心理学) 物理 图像分割 医学 放射科 计算机断层摄影术 外科
作者
Sadegh Alam,Qingfeng Li,Pengpeng Zhang,Siyuan Zhang,Saad Nadeem
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (6): 065008-065008 被引量:14
标识
DOI:10.1088/1361-6560/abe2eb
摘要

Automated segmentation of the esophagus is critical in image-guided/adaptive radiotherapy of lung cancer to minimize radiation-induced toxicities such as acute esophagitis. We have developed a semantic physics-based data augmentation method for segmenting the esophagus in both planning CT (pCT) and cone beam CT (CBCT) using 3D convolutional neural networks. One hundred and ninety-one cases with their pCTs and CBCTs from four independent datasets were used to train a modified 3D U-Net architecture and a multi-objective loss function specifically designed for soft-tissue organs such as the esophagus. Scatter artifacts and noises were extracted from week-1 CBCTs using a power-law adaptive histogram equalization method and induced to the corresponding pCT were reconstructed using CBCT reconstruction parameters. Moreover, we leveraged physics-based artifact induction in pCTs to drive the esophagus segmentation in real weekly CBCTs. Segmentations were evaluated using the geometric Dice coefficient and Hausdorff distance as well as dosimetrically using mean esophagus dose and D 5cc. Due to the physics-based data augmentation, our model trained just on the synthetic CBCTs was robust and generalizable enough to also produce state-of-the-art results on the pCTs and CBCTs, achieving Dice overlaps of 0.81 and 0.74, respectively. It is concluded that our physics-based data augmentation spans the realistic noise/artifact spectrum across patient CBCT/pCT data and can generalize well across modalities, eventually improving the accuracy of treatment setup and response analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyy完成签到,获得积分10
刚刚
星辰大海应助qiao采纳,获得10
1秒前
SUN完成签到,获得积分10
1秒前
liars发布了新的文献求助10
2秒前
Jeffery426发布了新的文献求助10
3秒前
3秒前
chen完成签到,获得积分10
3秒前
uuunnn完成签到,获得积分10
3秒前
细腻天蓝完成签到 ,获得积分10
3秒前
二师兄完成签到,获得积分10
4秒前
4秒前
春娟完成签到,获得积分10
5秒前
weixiaozdw发布了新的文献求助10
5秒前
邱文发布了新的文献求助10
5秒前
852应助ashley325采纳,获得10
6秒前
爆米花应助Giroro_roro采纳,获得10
6秒前
余乐驹完成签到,获得积分10
6秒前
6秒前
bodhi发布了新的文献求助10
6秒前
i十七发布了新的文献求助10
6秒前
6秒前
6秒前
刘昊政完成签到,获得积分20
6秒前
洪焕良完成签到,获得积分10
7秒前
赵清发布了新的文献求助10
7秒前
大模型应助fsky采纳,获得30
8秒前
慕青应助Wayi采纳,获得10
8秒前
上官若男应助花生采纳,获得10
8秒前
9秒前
Neuro_dan完成签到,获得积分0
9秒前
三两白菜完成签到,获得积分10
10秒前
SUN发布了新的文献求助10
10秒前
爆米花应助多喝水采纳,获得10
11秒前
11秒前
11秒前
缓慢如南完成签到,获得积分0
12秒前
12秒前
星辰大海应助晚灯君采纳,获得10
12秒前
Litianxue发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620