Emerging High-Performance SnS/CdS Nanoflower Heterojunction for Ultrafast Photonics

材料科学 异质结 超短脉冲 光电子学 光子学 激光器 纳米花 纳米材料 纳米技术 光学 纳米结构 物理
作者
Jiangjiang Feng,Xiaohui Li,Gangqiang Zhu,Qi Jie Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (38): 43098-43105 被引量:81
标识
DOI:10.1021/acsami.0c12907
摘要

Metal sulfide nanomaterials show many unique photoelectric properties when they are constructed as heterojunction materials, which have made them attractive in recent years. Among various applications of these heterojunction materials, nonlinear optical properties and related applications are promising research fields. Herein, a novel high performance SnS/CdS nanoflower heterostructure is successfully prepared by a water bath method. Scanning electron microscopy (SEM) images suggest the formation of a nanoheterojunction between SnS and CdS. In addition, a large modulation depth (13.6%) and a low saturation intensity (230.6 MW/cm2) of the SnS/CdS heterostructure are demonstrated, which indicates the outstanding potential of the SnS/CdS heterostructure in photonics among the other emerging novel nonlinear optical (NLO) materials. Meanwhile, the surface morphology, structures, and optical characteristics of the as-prepared SnS/CdS nanoflower sample are systemically analyzed. Furthermore, an ultrashort pulse laser with a fundamental repetition rate of 34.3 MHz, a pulse width of 558 fs, and a spectral width of 8.6 nm is realized at a central wavelength of 1560.8 nm. More importantly, we have successfully realized a soliton molecule with controllable pulse-pulse separation from 2.8 to 10.2 ps by controlling the phase difference of the cavity. This work reveals the excellent nonlinear optical properties of the SnS/CdS heterostructure and lays a foundation for its development in advanced optical modulators, saturable absorbers, and optical switching devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhui发布了新的文献求助10
1秒前
通达完成签到,获得积分10
2秒前
FashionBoy应助猪猪hero采纳,获得10
2秒前
jy发布了新的文献求助10
2秒前
祥云完成签到,获得积分10
2秒前
无敌鱼完成签到,获得积分10
3秒前
ffu完成签到 ,获得积分10
3秒前
天天快乐应助好的采纳,获得10
3秒前
3秒前
香蕉觅云应助科研小白花采纳,获得10
3秒前
18746005898发布了新的文献求助10
4秒前
科研通AI5应助fanfan44390采纳,获得10
4秒前
4秒前
4秒前
小刺猬完成签到,获得积分10
4秒前
小庄发布了新的文献求助10
4秒前
唐人雄发布了新的文献求助10
5秒前
英姑应助Khr1stINK采纳,获得10
5秒前
爆米花应助甜筒采纳,获得10
5秒前
Gang完成签到,获得积分10
5秒前
调研昵称发布了新的文献求助10
6秒前
Hello应助潇洒的青采纳,获得10
6秒前
6秒前
共享精神应助长孙归尘采纳,获得10
6秒前
7秒前
Evan123发布了新的文献求助10
7秒前
8秒前
xctdyl1992发布了新的文献求助10
8秒前
8秒前
Su完成签到,获得积分10
8秒前
俗丨完成签到,获得积分10
9秒前
科研通AI5应助海底落日采纳,获得30
9秒前
9秒前
CodeCraft应助纯真忆安采纳,获得10
9秒前
顺顺发布了新的文献求助10
9秒前
9秒前
10秒前
nan完成签到,获得积分10
10秒前
10秒前
自信的叫兽完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794