Precision medicine and management of rheumatoid arthritis

类风湿性关节炎 精密医学 医学 疾病 重症监护医学 大数据 管理策略 选择(遗传算法) 临床表型 数据挖掘 计算机科学 内科学 机器学习 病理 表型 工商管理 化学 业务 基因 生物化学
作者
Daniel Aletaha
出处
期刊:Journal of Autoimmunity [Elsevier]
卷期号:110: 102405-102405 被引量:71
标识
DOI:10.1016/j.jaut.2020.102405
摘要

Precision medicine (PM) is a very commonly used term that implies a highly individualized and tailored approach to patient management. There are, however, many layers of precision, as for example taking an appropriate patient history, or performing additional lab or imaging tests are already helping to better tailor treatments to the right patient. All this adds to the narrower definition of PM, which implies using the unique molecular characteristics of a patient for management decisions. Big data has become an essential part of PM, including as much information as possible to improve precision of disease management, although integration of multi-source data continues to be a challenge in practical application. In research big data can identify new (sub-)phenotypes in unsupervised analyses, which ultimately advance precision by allowing new targeted therapeutic approaches. We will discuss the current status of PM in rheumatoid arthritis (RA) in the management areas of diagnosis, prognosis, selection of therapy, and decision to reduce therapy. PM markers for diagnosis of RA are usually markers of RA classification rather than diagnosis, and subtypes of RA are potentially underrecognized. Prognostic precision is well established for RA, including markers of disease activity or structure, as well as autoantibodies and genetics. The choice of the right compound in a patient identified to have a poor prognosis, however, remains widely arbitrary. Finally and most recently, the most reliable markers for a safe withdrawal of therapy continue to be lower levels of disease activity and longer presence of remission.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁大海发布了新的文献求助10
刚刚
ljy完成签到,获得积分10
刚刚
亚里土缺德完成签到,获得积分10
刚刚
1秒前
薯片完成签到,获得积分20
2秒前
wrr完成签到,获得积分10
2秒前
无语的冰旋完成签到 ,获得积分10
2秒前
罗罗诺亚发布了新的文献求助10
3秒前
3秒前
迟梦乔完成签到,获得积分10
4秒前
春鸮鸟完成签到 ,获得积分10
4秒前
动人的诗霜完成签到 ,获得积分10
5秒前
5秒前
嗯哼举报小赵求助涉嫌违规
5秒前
淡淡菠萝完成签到,获得积分10
6秒前
6秒前
万能图书馆应助辣椒采纳,获得10
6秒前
chiu_yy发布了新的文献求助10
7秒前
Hello应助炙热曲奇采纳,获得10
7秒前
我是老大应助limin采纳,获得10
7秒前
ding应助会笑的猪猪猫采纳,获得10
7秒前
细心飞鸟发布了新的文献求助10
8秒前
Asheldon完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
hql_sdu完成签到,获得积分10
10秒前
lakers发布了新的文献求助10
11秒前
snow完成签到 ,获得积分10
11秒前
Akim应助高天雨采纳,获得10
11秒前
科研通AI2S应助labill采纳,获得10
11秒前
12秒前
Jiang发布了新的文献求助10
12秒前
Moonboss完成签到 ,获得积分10
12秒前
上官若男应助Yifan采纳,获得10
12秒前
13秒前
Druid发布了新的文献求助10
13秒前
14秒前
David完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159057
求助须知:如何正确求助?哪些是违规求助? 2810254
关于积分的说明 7886778
捐赠科研通 2469034
什么是DOI,文献DOI怎么找? 1314638
科研通“疑难数据库(出版商)”最低求助积分说明 630663
版权声明 602012