Lipid Chemical Structure Modulates the Disruptive Effects of Nanomaterials on Membrane Models

纳米材料 化学 纳米技术 脂质双层 生物物理学 材料科学 生物化学 生物
作者
Saeed Nazemidashtarjandi,Amid Vahedi,Amir M. Farnoud
出处
期刊:Langmuir [American Chemical Society]
卷期号:36 (18): 4923-4932 被引量:12
标识
DOI:10.1021/acs.langmuir.0c00295
摘要

Understanding the mechanisms by which engineered nanomaterials disrupt the cell plasma membrane is crucial in advancing the industrial and biomedical applications of nanotechnology. While the role of nanoparticle properties in inducing membrane damage has received significant attention, the role of the lipid chemical structure in regulating such interactions is less explored. Here, we investigated the role of the lipid chemical structure in the disruption of lipid vesicles by unmodified silica, carboxyl-modified silica, and unmodified polystyrene nanoparticles (50 nm). The role of the lipid headgroup was examined by comparing nanoparticle effects on vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vs an inverse phosphocholine (PC) with the same acyl chain structure. The role of acyl chain saturation was examined by comparing nanoparticle effects on saturated vs unsaturated PCs and sphingomyelins. Nanoparticle effects on PCs (glycerol backbone) vs sphingomyelins (sphingosine backbone) were also examined. Results showed that the lipid headgroup, backbone, and acyl chain saturation affect nanoparticle binding to and disruption of the membranes. A low headgroup tilt angle and the presence of a trimethylammonium moiety at the vesicle surface are required for unmodified nanoparticles to induce membrane disruption. Lipid backbone structure significantly affects nanoparticle–membrane interactions, with carboxyl-modified particles only disrupting lipids containing cis unsaturation and a sphingosine backbone. Acyl chain saturation makes vesicles more resistant to particles by increasing lipid packing in vesicles, impeding molecular interactions. Finally, nanoparticles were capable of changing the lipid packing, resulting in pore formation in the process. These observations are important in interpreting nanoparticle toxicity to biological membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助wmq采纳,获得10
刚刚
zhangzhang发布了新的文献求助10
1秒前
ni发布了新的文献求助10
1秒前
研友_VZG7GZ应助西子阳采纳,获得10
3秒前
易达发布了新的文献求助10
6秒前
华仔应助ni采纳,获得10
6秒前
NexusExplorer应助知己采纳,获得30
6秒前
Una发布了新的文献求助10
8秒前
JamesPei应助咯咚采纳,获得10
8秒前
彘shen完成签到 ,获得积分10
9秒前
9秒前
SEM小菜鸡完成签到,获得积分10
10秒前
10秒前
大个应助PL采纳,获得10
11秒前
11秒前
12秒前
VvV完成签到,获得积分10
13秒前
14秒前
14秒前
lulyt发布了新的文献求助10
16秒前
junyang完成签到,获得积分10
16秒前
lz发布了新的文献求助10
16秒前
星辰大海应助nini采纳,获得10
18秒前
Singularity应助小卫卫采纳,获得10
19秒前
axin发布了新的文献求助10
19秒前
善学以致用应助棉花摘心采纳,获得10
20秒前
20秒前
20秒前
xielunwen完成签到,获得积分20
22秒前
青光完成签到 ,获得积分10
23秒前
NUS发布了新的文献求助10
23秒前
酷波er应助crescendo采纳,获得10
24秒前
cj发布了新的文献求助10
24秒前
英俊的铭应助自转无风采纳,获得10
24秒前
24秒前
努力熊熊完成签到,获得积分10
25秒前
宫城百事顺完成签到,获得积分10
25秒前
26秒前
黄文森完成签到 ,获得积分10
26秒前
lianqing发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061