Lipid Chemical Structure Modulates the Disruptive Effects of Nanomaterials on Membrane Models

纳米材料 化学 纳米技术 脂质双层 生物物理学 材料科学 生物化学 生物
作者
Saeed Nazemidashtarjandi,Amid Vahedi,Amir M. Farnoud
出处
期刊:Langmuir [American Chemical Society]
卷期号:36 (18): 4923-4932 被引量:12
标识
DOI:10.1021/acs.langmuir.0c00295
摘要

Understanding the mechanisms by which engineered nanomaterials disrupt the cell plasma membrane is crucial in advancing the industrial and biomedical applications of nanotechnology. While the role of nanoparticle properties in inducing membrane damage has received significant attention, the role of the lipid chemical structure in regulating such interactions is less explored. Here, we investigated the role of the lipid chemical structure in the disruption of lipid vesicles by unmodified silica, carboxyl-modified silica, and unmodified polystyrene nanoparticles (50 nm). The role of the lipid headgroup was examined by comparing nanoparticle effects on vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vs an inverse phosphocholine (PC) with the same acyl chain structure. The role of acyl chain saturation was examined by comparing nanoparticle effects on saturated vs unsaturated PCs and sphingomyelins. Nanoparticle effects on PCs (glycerol backbone) vs sphingomyelins (sphingosine backbone) were also examined. Results showed that the lipid headgroup, backbone, and acyl chain saturation affect nanoparticle binding to and disruption of the membranes. A low headgroup tilt angle and the presence of a trimethylammonium moiety at the vesicle surface are required for unmodified nanoparticles to induce membrane disruption. Lipid backbone structure significantly affects nanoparticle–membrane interactions, with carboxyl-modified particles only disrupting lipids containing cis unsaturation and a sphingosine backbone. Acyl chain saturation makes vesicles more resistant to particles by increasing lipid packing in vesicles, impeding molecular interactions. Finally, nanoparticles were capable of changing the lipid packing, resulting in pore formation in the process. These observations are important in interpreting nanoparticle toxicity to biological membranes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
打打应助九月三日采纳,获得10
2秒前
zqr发布了新的文献求助10
2秒前
3秒前
无心的笑蓝完成签到,获得积分10
3秒前
Davy_Y发布了新的文献求助10
4秒前
5秒前
LLL发布了新的文献求助100
6秒前
透彻含义发布了新的文献求助10
6秒前
青年才俊发布了新的文献求助10
6秒前
8秒前
8秒前
李浩发布了新的文献求助10
8秒前
rrrrrrry发布了新的文献求助10
9秒前
9秒前
zhu97发布了新的文献求助10
9秒前
gulmira完成签到 ,获得积分10
9秒前
9秒前
彭于晏应助Davy_Y采纳,获得10
9秒前
梁潇桦发布了新的文献求助10
9秒前
子非鱼完成签到,获得积分10
10秒前
10秒前
废寝忘食完成签到,获得积分10
10秒前
毛毛酱酱酱完成签到,获得积分10
11秒前
Ande发布了新的文献求助10
14秒前
Liyaya完成签到,获得积分10
14秒前
aichan发布了新的文献求助10
14秒前
朱小燕发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
星河发布了新的文献求助10
15秒前
Akim应助zqr采纳,获得10
15秒前
欢呼山雁发布了新的文献求助10
15秒前
莫茹完成签到 ,获得积分10
15秒前
搜集达人应助顾兮sg采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
18秒前
反恐分子应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680372
求助须知:如何正确求助?哪些是违规求助? 4998418
关于积分的说明 15172742
捐赠科研通 4840279
什么是DOI,文献DOI怎么找? 2593943
邀请新用户注册赠送积分活动 1546924
关于科研通互助平台的介绍 1504958