Lipid Chemical Structure Modulates the Disruptive Effects of Nanomaterials on Membrane Models

纳米材料 化学 纳米技术 脂质双层 生物物理学 材料科学 生物化学 生物
作者
Saeed Nazemidashtarjandi,Amid Vahedi,Amir M. Farnoud
出处
期刊:Langmuir [American Chemical Society]
卷期号:36 (18): 4923-4932 被引量:12
标识
DOI:10.1021/acs.langmuir.0c00295
摘要

Understanding the mechanisms by which engineered nanomaterials disrupt the cell plasma membrane is crucial in advancing the industrial and biomedical applications of nanotechnology. While the role of nanoparticle properties in inducing membrane damage has received significant attention, the role of the lipid chemical structure in regulating such interactions is less explored. Here, we investigated the role of the lipid chemical structure in the disruption of lipid vesicles by unmodified silica, carboxyl-modified silica, and unmodified polystyrene nanoparticles (50 nm). The role of the lipid headgroup was examined by comparing nanoparticle effects on vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vs an inverse phosphocholine (PC) with the same acyl chain structure. The role of acyl chain saturation was examined by comparing nanoparticle effects on saturated vs unsaturated PCs and sphingomyelins. Nanoparticle effects on PCs (glycerol backbone) vs sphingomyelins (sphingosine backbone) were also examined. Results showed that the lipid headgroup, backbone, and acyl chain saturation affect nanoparticle binding to and disruption of the membranes. A low headgroup tilt angle and the presence of a trimethylammonium moiety at the vesicle surface are required for unmodified nanoparticles to induce membrane disruption. Lipid backbone structure significantly affects nanoparticle–membrane interactions, with carboxyl-modified particles only disrupting lipids containing cis unsaturation and a sphingosine backbone. Acyl chain saturation makes vesicles more resistant to particles by increasing lipid packing in vesicles, impeding molecular interactions. Finally, nanoparticles were capable of changing the lipid packing, resulting in pore formation in the process. These observations are important in interpreting nanoparticle toxicity to biological membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dasheng发布了新的文献求助10
刚刚
桐桐应助顾化蛹采纳,获得10
刚刚
刚刚
1秒前
东方天奇完成签到,获得积分10
2秒前
ledo发布了新的文献求助10
2秒前
2秒前
可爱的函函应助山竹采纳,获得10
2秒前
3秒前
hp发布了新的文献求助10
3秒前
4秒前
Jasper应助清宁亦无拘采纳,获得10
5秒前
刘霞发布了新的文献求助10
5秒前
jackdu发布了新的文献求助10
6秒前
6秒前
Owen应助美好外套采纳,获得10
6秒前
hi_traffic发布了新的文献求助10
7秒前
8秒前
CipherSage应助lin采纳,获得10
9秒前
苗轩发布了新的文献求助10
9秒前
9秒前
共享精神应助dasheng采纳,获得10
9秒前
10秒前
10秒前
11秒前
11秒前
不二发布了新的文献求助10
12秒前
13秒前
13秒前
长江完成签到 ,获得积分10
14秒前
安容天发布了新的文献求助30
14秒前
fanjinzhu发布了新的文献求助10
14秒前
英俊的铭应助梦蝴蝶采纳,获得10
15秒前
15秒前
柏觅夏发布了新的文献求助10
15秒前
顾化蛹发布了新的文献求助10
16秒前
斯文败类应助无辜的大雁采纳,获得10
17秒前
18秒前
梁漂亮发布了新的文献求助20
18秒前
美好外套发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561336
求助须知:如何正确求助?哪些是违规求助? 3134989
关于积分的说明 9410720
捐赠科研通 2835413
什么是DOI,文献DOI怎么找? 1558442
邀请新用户注册赠送积分活动 728219
科研通“疑难数据库(出版商)”最低求助积分说明 716729