A Statistical Learning Assessment of Huber Regression

非参数回归 估计员 稳健回归 回归诊断 回归分析 力矩(物理) 数学 统计 回归 非参数统计 计量经济学 计算机科学 人工智能 多项式回归 经典力学 物理
作者
Yan Feng,Qiang Wu
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2009.12755
摘要

As one of the triumphs and milestones of robust statistics, Huber regression plays an important role in robust inference and estimation. It has also been finding a great variety of applications in machine learning. In a parametric setup, it has been extensively studied. However, in the statistical learning context where a function is typically learned in a nonparametric way, there is still a lack of theoretical understanding of how Huber regression estimators learn the conditional mean function and why it works in the absence of light-tailed noise assumptions. To address these fundamental questions, we conduct an assessment of Huber regression from a statistical learning viewpoint. First, we show that the usual risk consistency property of Huber regression estimators, which is usually pursued in machine learning, cannot guarantee their learnability in mean regression. Second, we argue that Huber regression should be implemented in an adaptive way to perform mean regression, implying that one needs to tune the scale parameter in accordance with the sample size and the moment condition of the noise. Third, with an adaptive choice of the scale parameter, we demonstrate that Huber regression estimators can be asymptotic mean regression calibrated under $(1+\epsilon)$-moment conditions ($\epsilon>0$). Last but not least, under the same moment conditions, we establish almost sure convergence rates for Huber regression estimators. Note that the $(1+\epsilon)$-moment conditions accommodate the special case where the response variable possesses infinite variance and so the established convergence rates justify the robustness feature of Huber regression estimators. In the above senses, the present study provides a systematic statistical learning assessment of Huber regression estimators and justifies their merits in terms of robustness from a theoretical viewpoint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助马丁陌陌007采纳,获得10
刚刚
1秒前
1秒前
GUO完成签到,获得积分10
1秒前
1秒前
哭唧唧完成签到,获得积分10
1秒前
1秒前
wang发布了新的文献求助20
1秒前
玉米完成签到,获得积分20
2秒前
2秒前
娇气的飞凤完成签到 ,获得积分20
3秒前
4秒前
4秒前
烟花应助长情钥匙采纳,获得10
5秒前
周冬利完成签到,获得积分10
5秒前
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
禾几发布了新的文献求助10
6秒前
pp发布了新的文献求助10
7秒前
hh发布了新的文献求助10
7秒前
含糊的可仁完成签到,获得积分10
8秒前
独特苡发布了新的文献求助20
8秒前
10秒前
小二郎应助热情的戾采纳,获得10
10秒前
11秒前
dx完成签到,获得积分10
12秒前
fuyuhaoy完成签到,获得积分10
12秒前
木木木发布了新的文献求助10
12秒前
权思远发布了新的文献求助10
12秒前
13秒前
13秒前
纵使千千晚星完成签到,获得积分10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476452
求助须知:如何正确求助?哪些是违规求助? 3068067
关于积分的说明 9106438
捐赠科研通 2759609
什么是DOI,文献DOI怎么找? 1514156
邀请新用户注册赠送积分活动 700093
科研通“疑难数据库(出版商)”最低求助积分说明 699284