清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Statistical Learning Assessment of Huber Regression

非参数回归 估计员 稳健回归 回归诊断 回归分析 力矩(物理) 数学 统计 回归 非参数统计 计量经济学 计算机科学 人工智能 多项式回归 经典力学 物理
作者
Yan Feng,Qiang Wu
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2009.12755
摘要

As one of the triumphs and milestones of robust statistics, Huber regression plays an important role in robust inference and estimation. It has also been finding a great variety of applications in machine learning. In a parametric setup, it has been extensively studied. However, in the statistical learning context where a function is typically learned in a nonparametric way, there is still a lack of theoretical understanding of how Huber regression estimators learn the conditional mean function and why it works in the absence of light-tailed noise assumptions. To address these fundamental questions, we conduct an assessment of Huber regression from a statistical learning viewpoint. First, we show that the usual risk consistency property of Huber regression estimators, which is usually pursued in machine learning, cannot guarantee their learnability in mean regression. Second, we argue that Huber regression should be implemented in an adaptive way to perform mean regression, implying that one needs to tune the scale parameter in accordance with the sample size and the moment condition of the noise. Third, with an adaptive choice of the scale parameter, we demonstrate that Huber regression estimators can be asymptotic mean regression calibrated under $(1+\epsilon)$-moment conditions ($\epsilon>0$). Last but not least, under the same moment conditions, we establish almost sure convergence rates for Huber regression estimators. Note that the $(1+\epsilon)$-moment conditions accommodate the special case where the response variable possesses infinite variance and so the established convergence rates justify the robustness feature of Huber regression estimators. In the above senses, the present study provides a systematic statistical learning assessment of Huber regression estimators and justifies their merits in terms of robustness from a theoretical viewpoint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的三问完成签到 ,获得积分10
21秒前
21秒前
华仔应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
kean1943完成签到,获得积分10
32秒前
minnie完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
37秒前
缓慢的蜗牛完成签到,获得积分10
43秒前
52秒前
55秒前
1分钟前
savesunshine1022完成签到,获得积分10
1分钟前
Yangyang完成签到,获得积分10
1分钟前
1分钟前
1分钟前
嘟嘟噜发布了新的文献求助10
1分钟前
舒适以松发布了新的文献求助10
1分钟前
1分钟前
1分钟前
嘟嘟噜完成签到,获得积分10
1分钟前
lorentzh完成签到,获得积分10
2分钟前
笨笨完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
舒适以松完成签到,获得积分10
2分钟前
绿色心情完成签到 ,获得积分10
3分钟前
firesquall完成签到,获得积分10
3分钟前
乏味完成签到,获得积分20
3分钟前
乏味关注了科研通微信公众号
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
今后应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
无心的尔阳完成签到 ,获得积分20
4分钟前
4分钟前
4分钟前
poki完成签到 ,获得积分10
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015363
求助须知:如何正确求助?哪些是违规求助? 3555313
关于积分的说明 11317959
捐赠科研通 3288629
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 811983