Measuring interaction among cities in China: A geographical awareness approach with social media data

猛增 索引(排版) 地理 社会化媒体 代理(统计) 排名(信息检索) 城市等级制度 中国 区域科学 经济地理学 计算机科学 社会学 人口学 人口 考古 人工智能 万维网 机器学习
作者
Xinyue Ye,Shengwen Calvin Li,Qiong Peng
出处
期刊:Cities [Elsevier BV]
卷期号:109: 103041-103041 被引量:9
标识
DOI:10.1016/j.cities.2020.103041
摘要

Unlike the large body of research on investigating interactions among cities using survey data, the social media-based city interaction study has received much less exploration. Based on geographical studies of social media content in China, we develop a few indices quantifying various levels of geographical awareness among cities. (1) We find that the geographical awareness proxy by the social media-based indices can measure interactions among cities. Specifically, the geographical awareness among cities follows gravitational law and is highly correlated with mobility flows. (2) The spatial in-awareness index (SIAI) is an appropriate index indicating a city's ranking in the urban hierarchy (3) the spatial out-awareness rate (SOAR) can indicate the interactions from a focal city to other cities. Our findings also show that SOAR can predict the number of people infected during a pandemic in a city system. Once the origin city or hotspots of the outbreak and the number of infected persons within those cities are known, we can use the social media-based SOAR index to predict number of cases for other else cities in the urban system. With this information, governments can properly and efficiently deliver medical equipment and staff to cities where large populations are infected. • Develops social media-based geographical awareness indices: such as spatial out-awareness rate (SOAR) and in-awareness index (SIAI). • Using an econometric model, the study shows that geographical awareness among cities follows gravitational law with a decay function parameter of 0.308 • Use mobility flow data to verify that the social media-based indices can measure interactions among cities. • Shows that SIAI is an appropriate index for indicating a city’s ranking in the urban hierarchy • SOAR can indicate the interactions from a focal city to other cities and predict the number of people infected during a pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
void科学家发布了新的文献求助10
1秒前
ryt发布了新的文献求助10
1秒前
2秒前
兴奋大船完成签到,获得积分10
2秒前
小马完成签到,获得积分10
2秒前
fancy发布了新的文献求助10
3秒前
怡然的幻灵完成签到,获得积分10
4秒前
星辰大海应助秋向秋采纳,获得10
4秒前
李敬语完成签到,获得积分10
4秒前
Spectrum_07完成签到,获得积分10
5秒前
Cynthia完成签到,获得积分10
5秒前
赘婿应助文龙采纳,获得10
7秒前
聪慧的石头完成签到,获得积分10
7秒前
8秒前
小东同志完成签到,获得积分10
8秒前
8秒前
张同学快去做实验呀完成签到,获得积分10
8秒前
木子木子李完成签到,获得积分10
9秒前
画画完成签到,获得积分10
9秒前
子叶叶子完成签到,获得积分10
9秒前
9秒前
遂安完成签到,获得积分10
10秒前
10秒前
华仔应助z_king_d_23采纳,获得10
10秒前
10秒前
10秒前
苹果发布了新的文献求助10
11秒前
GG发布了新的文献求助10
11秒前
彭于晏应助erhan7采纳,获得30
11秒前
orixero应助meiyugao采纳,获得10
12秒前
亦玉完成签到,获得积分10
12秒前
12秒前
JamesPei应助刘文莉采纳,获得10
12秒前
weijie发布了新的文献求助10
13秒前
Jenaloe发布了新的文献求助10
14秒前
maofeng发布了新的文献求助10
14秒前
NexusExplorer应助abcc1234采纳,获得10
14秒前
小刺猬完成签到,获得积分10
14秒前
辛辛点灯完成签到 ,获得积分10
15秒前
fsky发布了新的文献求助30
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582