Measuring interaction among cities in China: A geographical awareness approach with social media data

猛增 索引(排版) 地理 社会化媒体 代理(统计) 排名(信息检索) 城市等级制度 中国 区域科学 经济地理学 计算机科学 社会学 人口学 人口 考古 人工智能 万维网 机器学习
作者
Xinyue Ye,Shengwen Calvin Li,Qiong Peng
出处
期刊:Cities [Elsevier BV]
卷期号:109: 103041-103041 被引量:9
标识
DOI:10.1016/j.cities.2020.103041
摘要

Unlike the large body of research on investigating interactions among cities using survey data, the social media-based city interaction study has received much less exploration. Based on geographical studies of social media content in China, we develop a few indices quantifying various levels of geographical awareness among cities. (1) We find that the geographical awareness proxy by the social media-based indices can measure interactions among cities. Specifically, the geographical awareness among cities follows gravitational law and is highly correlated with mobility flows. (2) The spatial in-awareness index (SIAI) is an appropriate index indicating a city's ranking in the urban hierarchy (3) the spatial out-awareness rate (SOAR) can indicate the interactions from a focal city to other cities. Our findings also show that SOAR can predict the number of people infected during a pandemic in a city system. Once the origin city or hotspots of the outbreak and the number of infected persons within those cities are known, we can use the social media-based SOAR index to predict number of cases for other else cities in the urban system. With this information, governments can properly and efficiently deliver medical equipment and staff to cities where large populations are infected. • Develops social media-based geographical awareness indices: such as spatial out-awareness rate (SOAR) and in-awareness index (SIAI). • Using an econometric model, the study shows that geographical awareness among cities follows gravitational law with a decay function parameter of 0.308 • Use mobility flow data to verify that the social media-based indices can measure interactions among cities. • Shows that SIAI is an appropriate index for indicating a city’s ranking in the urban hierarchy • SOAR can indicate the interactions from a focal city to other cities and predict the number of people infected during a pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
robin完成签到,获得积分10
1秒前
chester_WU应助小小鱼采纳,获得20
1秒前
东郭一斩完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
科研通AI5应助morris采纳,获得10
2秒前
3秒前
小王完成签到,获得积分10
4秒前
4秒前
最好发布了新的文献求助10
4秒前
含蓄的白安完成签到,获得积分10
4秒前
Wang1991发布了新的文献求助10
4秒前
玉梅发布了新的文献求助10
5秒前
AAAorangeCat发布了新的文献求助10
5秒前
6秒前
科目三应助yifeng11采纳,获得20
6秒前
洞悉发布了新的文献求助10
6秒前
森宝完成签到,获得积分10
7秒前
程佑贵发布了新的文献求助10
7秒前
7秒前
9秒前
Bugu关注了科研通微信公众号
9秒前
9秒前
10秒前
谢谢谢发布了新的文献求助10
12秒前
12秒前
小二郎应助小巧的晓旋采纳,获得10
12秒前
852应助兔宝宝采纳,获得10
12秒前
13秒前
大胆的弼发布了新的文献求助10
13秒前
YuuuY完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
完美世界应助玉梅采纳,获得10
14秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624655
求助须知:如何正确求助?哪些是违规求助? 4024032
关于积分的说明 12456192
捐赠科研通 3708659
什么是DOI,文献DOI怎么找? 2045529
邀请新用户注册赠送积分活动 1077574
科研通“疑难数据库(出版商)”最低求助积分说明 960093