Measuring interaction among cities in China: A geographical awareness approach with social media data

猛增 索引(排版) 地理 社会化媒体 代理(统计) 排名(信息检索) 城市等级制度 中国 区域科学 经济地理学 计算机科学 社会学 人口学 人口 考古 人工智能 万维网 机器学习
作者
Xinyue Ye,Shengwen Calvin Li,Qiong Peng
出处
期刊:Cities [Elsevier]
卷期号:109: 103041-103041 被引量:9
标识
DOI:10.1016/j.cities.2020.103041
摘要

Unlike the large body of research on investigating interactions among cities using survey data, the social media-based city interaction study has received much less exploration. Based on geographical studies of social media content in China, we develop a few indices quantifying various levels of geographical awareness among cities. (1) We find that the geographical awareness proxy by the social media-based indices can measure interactions among cities. Specifically, the geographical awareness among cities follows gravitational law and is highly correlated with mobility flows. (2) The spatial in-awareness index (SIAI) is an appropriate index indicating a city's ranking in the urban hierarchy (3) the spatial out-awareness rate (SOAR) can indicate the interactions from a focal city to other cities. Our findings also show that SOAR can predict the number of people infected during a pandemic in a city system. Once the origin city or hotspots of the outbreak and the number of infected persons within those cities are known, we can use the social media-based SOAR index to predict number of cases for other else cities in the urban system. With this information, governments can properly and efficiently deliver medical equipment and staff to cities where large populations are infected. • Develops social media-based geographical awareness indices: such as spatial out-awareness rate (SOAR) and in-awareness index (SIAI). • Using an econometric model, the study shows that geographical awareness among cities follows gravitational law with a decay function parameter of 0.308 • Use mobility flow data to verify that the social media-based indices can measure interactions among cities. • Shows that SIAI is an appropriate index for indicating a city’s ranking in the urban hierarchy • SOAR can indicate the interactions from a focal city to other cities and predict the number of people infected during a pandemic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lyy66964193完成签到,获得积分10
1秒前
王京华发布了新的文献求助10
1秒前
李健的小迷弟应助lululu采纳,获得10
1秒前
长尾巴的人类完成签到,获得积分10
1秒前
LHY发布了新的文献求助10
1秒前
gb完成签到 ,获得积分10
1秒前
充电宝应助xiaojiahuo采纳,获得10
1秒前
2秒前
柒tt完成签到,获得积分10
3秒前
陶醉的天与完成签到 ,获得积分10
3秒前
文艺如凡发布了新的文献求助10
3秒前
小菜鸟发布了新的文献求助10
4秒前
云重言完成签到,获得积分10
5秒前
奇异果果发布了新的文献求助10
5秒前
田様应助洁净的涵山采纳,获得10
6秒前
无疾而终完成签到,获得积分10
6秒前
大倩完成签到,获得积分10
6秒前
Jun完成签到 ,获得积分10
6秒前
6秒前
lyy发布了新的文献求助10
7秒前
李健的小迷弟应助晋姝采纳,获得10
8秒前
赘婿应助爆炸采纳,获得10
8秒前
群q发布了新的文献求助10
8秒前
8秒前
9秒前
xlf完成签到 ,获得积分10
9秒前
潘潘007完成签到,获得积分20
10秒前
Min完成签到,获得积分10
10秒前
NexusExplorer应助小Z采纳,获得10
11秒前
11秒前
11秒前
11秒前
大个应助夕荀采纳,获得10
11秒前
lichen发布了新的文献求助10
11秒前
二胖完成签到,获得积分10
12秒前
鹏飞九霄完成签到,获得积分10
12秒前
霸气师完成签到 ,获得积分10
13秒前
13秒前
勤劳的忆寒完成签到,获得积分0
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005