ABA-responsive transcription factor bZIP1 is involved in modulating biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza

丹参 生物合成 生物化学 基因 转录因子 化学 生物 细胞生物学 医学 病理 中医药 替代医学
作者
Changping Deng,Min Shi,Rong Fu,Yi Zhang,Qiang Wang,Yang Zhou,Yao Wang,Xingyuan Ma,Guoyin Kai
出处
期刊:Journal of Experimental Botany [Oxford University Press]
卷期号:71 (19): 5948-5962 被引量:82
标识
DOI:10.1093/jxb/eraa295
摘要

Abstract Phenolic acids and tanshinones are major bioactive ingredients in Salvia miltiorrhiza, which possess pharmacological activities with great market demand. However, transcriptional regulation of phenolic acid and tanshinone biosynthesis remains poorly understood. Here, a basic leucine zipper transcription factor (TF) named SmbZIP1 was screened from the abscisic acid (ABA)-induced transcriptome library. Overexpression of SmbZIP1 positively promoted phenolic acid biosynthesis by enhancing expression of biosynthetic genes such as cinnamate-4-hydroxylase (C4H1). Furthermore, biochemical experiments revealed that SmbZIP1 bound the G-Box-like1 element in the promoter of the C4H1 gene. Meanwhile, SmbZIP1 inhibited accumulation of tanshinones mainly by suppressing the expression of biosynthetic genes including geranylgeranyl diphosphate synthase (GGPPS) which was confirmed as a target gene by in vitro and in vivo experiments. In contrast, the phenolic acid content was reduced and tanshinone was enhanced in CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9]-mediated knockout lines. In addition, the previously reported positive regulator of tanshinone biosynthesis, SmERF1L1, was found to be inhibited in SmbZIP1 overexpression lines indicated by RNA sequencing, and was proven to be the target of SmbZIP1. In summary, this work uncovers a novel regulator and deepens our understanding of the transcriptional and regulatory mechanisms of phenolic acid and tanshinone biosynthesis, and also sheds new light on metabolic engineering in S. miltiorrhiza.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助等下完这场雨采纳,获得10
刚刚
2秒前
4秒前
5秒前
7秒前
吞金兽发布了新的文献求助10
8秒前
科研通AI5应助mujin采纳,获得10
8秒前
yuan发布了新的文献求助10
10秒前
12秒前
liangshuang发布了新的文献求助10
13秒前
shuyi完成签到 ,获得积分10
15秒前
快船总冠军完成签到 ,获得积分10
17秒前
高越发布了新的文献求助10
17秒前
18秒前
笙声慢发布了新的文献求助10
18秒前
乐易发布了新的文献求助10
19秒前
聪明凉面发布了新的文献求助10
21秒前
mujin发布了新的文献求助10
22秒前
科研通AI5应助刘shuchang采纳,获得10
23秒前
Serein完成签到,获得积分10
25秒前
KKKKKKK完成签到 ,获得积分10
27秒前
28秒前
yuan完成签到,获得积分10
29秒前
猪猪hero应助wrk采纳,获得10
29秒前
30秒前
31秒前
32秒前
Axe发布了新的文献求助10
35秒前
是小王ya完成签到,获得积分10
35秒前
666发布了新的文献求助10
36秒前
11发布了新的文献求助10
36秒前
三七发布了新的文献求助30
38秒前
酷波er应助兴奋的果汁采纳,获得10
39秒前
42秒前
42秒前
42秒前
44秒前
ZSQ发布了新的文献求助10
45秒前
Awikl完成签到,获得积分10
46秒前
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673357
求助须知:如何正确求助?哪些是违规求助? 3229110
关于积分的说明 9783984
捐赠科研通 2939630
什么是DOI,文献DOI怎么找? 1611183
邀请新用户注册赠送积分活动 760809
科研通“疑难数据库(出版商)”最低求助积分说明 736290