Prediction of Depression in Social Network Sites Using Data Mining

计算机科学 机器学习 集合(抽象数据类型) 社交网络(社会语言学) 人工智能 感觉 互联网 数据科学 数据挖掘 比例(比率) 数据集 社会化媒体 万维网 心理学 物理 社会心理学 量子力学 程序设计语言
作者
R. Vanlalawmpuia,Mr Lalhmingliana
标识
DOI:10.1109/iciccs48265.2020.9120899
摘要

Social network Site has captured the attention of the young generation for the last past ten years. Through internet technology, it is becoming convenient and easy to access and interact with these social network sites with another side of the world. So, social network sites are now a source of mining data as large people are interacting and socializing with each other. Immense information relating to the user's state of mind, feeling and negativism can also be extracted. Meanwhile, the Social network sites have been using to seek remedy for their worries not knowing they are having mental problems. Hence, Data mining gives a various way of techniques to retrieve relevant information and knowledge. And can also be used for statistical reports, machine learning and deep learning. These techniques introduce how to handle the retrieved data in the course of data analysis. This study has highlighted and revealed the user's mental health status and condition by analyzing each user's data. Analyzing data involves training each user's data to get an output and also have a test set to get efficiency and accuracy. This study has brought out many depressive indicative words which play an important role to bring this study success. We also proposed some few methods that have been carried out in this study. Analyzation for efficiency has been performed using this proposed method which containing packages of emotional words and can also increase the accuracy, efficiency and the scale of analyzation lapse. Both these technology data mining and machine learning can give us the condition and status of the user's mental health problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助crowd_lpy采纳,获得10
1秒前
情怀应助毛毛球采纳,获得10
1秒前
2秒前
3秒前
叶子发布了新的文献求助10
3秒前
子21发布了新的文献求助10
4秒前
4秒前
4秒前
Animagus应助jgpiao采纳,获得10
5秒前
1234发布了新的文献求助10
5秒前
wy.he应助Cape采纳,获得10
6秒前
求助应助Cape采纳,获得10
6秒前
yar应助Cape采纳,获得10
6秒前
yar应助Cape采纳,获得10
7秒前
ddttdt应助Cape采纳,获得10
7秒前
yar应助Cape采纳,获得10
7秒前
Hello应助123采纳,获得10
7秒前
8秒前
书记发布了新的文献求助10
8秒前
BYN发布了新的文献求助10
8秒前
Miao0603完成签到,获得积分10
8秒前
9秒前
大大完成签到 ,获得积分10
9秒前
9秒前
ad无人完成签到,获得积分10
9秒前
9秒前
蛋挞好好吃完成签到,获得积分10
10秒前
方大帅发布了新的文献求助10
10秒前
劲秉应助木偶采纳,获得10
11秒前
11秒前
今后应助萝卜特二采纳,获得10
13秒前
13秒前
李健应助leo采纳,获得10
13秒前
上官若男应助wujiwuhui采纳,获得10
14秒前
lingua应助跳跃保温杯采纳,获得10
15秒前
大个应助跳跃保温杯采纳,获得10
15秒前
15秒前
慕容雨文发布了新的文献求助10
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
金属中的晶界偏聚 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296766
求助须知:如何正确求助?哪些是违规求助? 2932428
关于积分的说明 8456797
捐赠科研通 2604920
什么是DOI,文献DOI怎么找? 1422116
科研通“疑难数据库(出版商)”最低求助积分说明 661288
邀请新用户注册赠送积分活动 644372