Deep learning segmentation and quantification of Meibomian glands

分割 计算机科学 人工智能 基本事实 睑板腺 深度学习 卷积神经网络 图像分割 计算机视觉 模式识别(心理学) 医学 眼科 眼睑
作者
Sahana M. Prabhu,Abhijith Chakiat,S Shashank,Krishna Poojita Vunnava,Rohit Shetty
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:57: 101776-101776 被引量:24
标识
DOI:10.1016/j.bspc.2019.101776
摘要

Meibomian gland dysfunction is the most common cause of the dry-eye syndrome, and it refers to deterioration of the Meibomian glands that are present in the eyelids. This paper presents a strategy for segmentation of Meibomian glands using Convolutional Neural Networks. We also present a set of clinically-relevant metrics to quantify the health of the glands. In order to model the possible variations in data using a limited representative training image database, our work proposes several custom augmentation strategies to use the available data efficiently. We have collected Meibography images from two sources: (i) Oculus Keratograph-5M, which is a high-end table-top equipment, and (ii) Prototype Hand-held camera. We have found that the images captured from the hand-held imager are of sufficient quality and comparable to the Oculus Keratograph. We present the analysis of the results of gland segmentation on test-sets from both these imagers and compare against the results from ground-truth markings by clinical experts. Our deep learning-based segmentation model is tested on an equal number of diseased images as well as healthy images. We conclude that the metrics from our segmentation results are close to those derived from ground-truth, and also that the metrics are useful for differentiating between healthy versus diseased eyes. The p-values between the ground-truth and the proposed method is p > 0.005 consistently for all the metrics, and therefore, the segmentation approach is quite accurate. There is no overlap in the intervals between the healthy and diseased cases for majority of the metrics. Average metrics for diseased cases using the proposed algorithm on the images captured by the prototype are: number of glands 13.11, tortuosity 1.29, width 4.3, length 40.31 and gland-drop 0.70 and for healthy cases: number of glands 14.40, tortuosity 1.31, width 4.20, length 47.88 and gland-drop 0.56.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
泥花发布了新的文献求助10
2秒前
星辰大海应助lbjcp3采纳,获得30
2秒前
3秒前
3秒前
katja发布了新的文献求助10
4秒前
李神奇应助米虫采纳,获得30
5秒前
Mrking发布了新的文献求助10
7秒前
火星仙人掌完成签到,获得积分10
7秒前
7秒前
zhang完成签到,获得积分20
8秒前
我来了完成签到,获得积分10
8秒前
8秒前
Seven发布了新的文献求助10
9秒前
WissF-发布了新的文献求助10
10秒前
10秒前
zhang发布了新的文献求助10
11秒前
夏依瑶发布了新的文献求助10
12秒前
12秒前
yilin发布了新的文献求助10
12秒前
13秒前
寂寞的向真完成签到 ,获得积分10
13秒前
烟花应助现代雪柳采纳,获得10
13秒前
14秒前
打工仔完成签到,获得积分10
14秒前
katja完成签到,获得积分10
14秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
stuffmatter应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
stuffmatter应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
15秒前
共享精神应助科研通管家采纳,获得30
15秒前
pluto应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
emxzemxz完成签到 ,获得积分10
16秒前
嗯哼应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076804
求助须知:如何正确求助?哪些是违规求助? 2729802
关于积分的说明 7510010
捐赠科研通 2378023
什么是DOI,文献DOI怎么找? 1260989
科研通“疑难数据库(出版商)”最低求助积分说明 611204
版权声明 597203