Deep learning segmentation and quantification of Meibomian glands

分割 计算机科学 人工智能 基本事实 睑板腺 深度学习 卷积神经网络 图像分割 计算机视觉 模式识别(心理学) 医学 眼科 眼睑
作者
Sahana M. Prabhu,Abhijith Chakiat,S Shashank,Krishna Poojita Vunnava,Rohit Shetty
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:57: 101776-101776 被引量:24
标识
DOI:10.1016/j.bspc.2019.101776
摘要

Meibomian gland dysfunction is the most common cause of the dry-eye syndrome, and it refers to deterioration of the Meibomian glands that are present in the eyelids. This paper presents a strategy for segmentation of Meibomian glands using Convolutional Neural Networks. We also present a set of clinically-relevant metrics to quantify the health of the glands. In order to model the possible variations in data using a limited representative training image database, our work proposes several custom augmentation strategies to use the available data efficiently. We have collected Meibography images from two sources: (i) Oculus Keratograph-5M, which is a high-end table-top equipment, and (ii) Prototype Hand-held camera. We have found that the images captured from the hand-held imager are of sufficient quality and comparable to the Oculus Keratograph. We present the analysis of the results of gland segmentation on test-sets from both these imagers and compare against the results from ground-truth markings by clinical experts. Our deep learning-based segmentation model is tested on an equal number of diseased images as well as healthy images. We conclude that the metrics from our segmentation results are close to those derived from ground-truth, and also that the metrics are useful for differentiating between healthy versus diseased eyes. The p-values between the ground-truth and the proposed method is p > 0.005 consistently for all the metrics, and therefore, the segmentation approach is quite accurate. There is no overlap in the intervals between the healthy and diseased cases for majority of the metrics. Average metrics for diseased cases using the proposed algorithm on the images captured by the prototype are: number of glands 13.11, tortuosity 1.29, width 4.3, length 40.31 and gland-drop 0.70 and for healthy cases: number of glands 14.40, tortuosity 1.31, width 4.20, length 47.88 and gland-drop 0.56.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王海祥发布了新的文献求助10
刚刚
swallow完成签到,获得积分10
1秒前
啵啵阳子发布了新的文献求助10
2秒前
炙热的雨双完成签到 ,获得积分10
2秒前
storm完成签到,获得积分10
5秒前
完美梨愁完成签到 ,获得积分10
8秒前
凉笙墨染完成签到,获得积分10
8秒前
光亮向露完成签到,获得积分10
10秒前
yang完成签到,获得积分10
11秒前
化学镁铝完成签到,获得积分10
12秒前
恭喜完成签到,获得积分10
15秒前
Diego完成签到,获得积分10
15秒前
Aha完成签到 ,获得积分10
16秒前
土豆泥完成签到,获得积分10
16秒前
目土土完成签到 ,获得积分10
17秒前
冷冷暴力完成签到,获得积分10
17秒前
沫荔完成签到 ,获得积分10
18秒前
枯叶蝶完成签到 ,获得积分10
18秒前
科目三应助王海祥采纳,获得10
19秒前
19秒前
zzz完成签到,获得积分10
20秒前
Duckseid完成签到,获得积分10
20秒前
行云流水完成签到,获得积分10
20秒前
Alicia完成签到 ,获得积分10
24秒前
24秒前
隐形的谷槐完成签到 ,获得积分10
25秒前
周萌完成签到 ,获得积分10
26秒前
虚幻初之完成签到,获得积分10
26秒前
LL完成签到,获得积分20
27秒前
柑橘发布了新的文献求助10
29秒前
geogydeniel完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
35秒前
独孤刘完成签到,获得积分10
37秒前
Janus完成签到,获得积分10
39秒前
khan发布了新的文献求助50
43秒前
YOUNG-M完成签到,获得积分10
44秒前
大力云朵完成签到,获得积分10
47秒前
现代老鼠完成签到,获得积分10
47秒前
蔡翌文完成签到 ,获得积分10
47秒前
夜曦完成签到 ,获得积分0
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910766
求助须知:如何正确求助?哪些是违规求助? 4186429
关于积分的说明 12999659
捐赠科研通 3953947
什么是DOI,文献DOI怎么找? 2168228
邀请新用户注册赠送积分活动 1186607
关于科研通互助平台的介绍 1093874