清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning segmentation and quantification of Meibomian glands

分割 计算机科学 人工智能 基本事实 睑板腺 深度学习 卷积神经网络 图像分割 计算机视觉 模式识别(心理学) 医学 眼科 眼睑
作者
Sahana M. Prabhu,Abhijith Chakiat,S Shashank,Krishna Poojita Vunnava,Rohit Shetty
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:57: 101776-101776 被引量:24
标识
DOI:10.1016/j.bspc.2019.101776
摘要

Meibomian gland dysfunction is the most common cause of the dry-eye syndrome, and it refers to deterioration of the Meibomian glands that are present in the eyelids. This paper presents a strategy for segmentation of Meibomian glands using Convolutional Neural Networks. We also present a set of clinically-relevant metrics to quantify the health of the glands. In order to model the possible variations in data using a limited representative training image database, our work proposes several custom augmentation strategies to use the available data efficiently. We have collected Meibography images from two sources: (i) Oculus Keratograph-5M, which is a high-end table-top equipment, and (ii) Prototype Hand-held camera. We have found that the images captured from the hand-held imager are of sufficient quality and comparable to the Oculus Keratograph. We present the analysis of the results of gland segmentation on test-sets from both these imagers and compare against the results from ground-truth markings by clinical experts. Our deep learning-based segmentation model is tested on an equal number of diseased images as well as healthy images. We conclude that the metrics from our segmentation results are close to those derived from ground-truth, and also that the metrics are useful for differentiating between healthy versus diseased eyes. The p-values between the ground-truth and the proposed method is p > 0.005 consistently for all the metrics, and therefore, the segmentation approach is quite accurate. There is no overlap in the intervals between the healthy and diseased cases for majority of the metrics. Average metrics for diseased cases using the proposed algorithm on the images captured by the prototype are: number of glands 13.11, tortuosity 1.29, width 4.3, length 40.31 and gland-drop 0.70 and for healthy cases: number of glands 14.40, tortuosity 1.31, width 4.20, length 47.88 and gland-drop 0.56.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyds完成签到,获得积分10
16秒前
完美世界应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
30秒前
55秒前
爱窦完成签到 ,获得积分10
1分钟前
1分钟前
juan完成签到 ,获得积分10
1分钟前
谢薇是猪完成签到,获得积分10
2分钟前
清脆的飞丹完成签到,获得积分10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
开心苠发布了新的文献求助10
2分钟前
3分钟前
拉长的秋白完成签到 ,获得积分10
3分钟前
3分钟前
widesky777完成签到 ,获得积分0
3分钟前
3分钟前
从容的雪碧完成签到,获得积分10
3分钟前
3分钟前
无悔完成签到 ,获得积分10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
Hjz完成签到,获得积分20
4分钟前
coolplex完成签到 ,获得积分10
4分钟前
5分钟前
6分钟前
微笑高山完成签到 ,获得积分10
6分钟前
雪山飞龙完成签到,获得积分10
7分钟前
里昂义务完成签到,获得积分10
7分钟前
里昂义务发布了新的文献求助10
7分钟前
光合作用完成签到,获得积分10
8分钟前
fanssw完成签到 ,获得积分10
8分钟前
8分钟前
liuzhigang完成签到 ,获得积分10
9分钟前
JrPaleo101完成签到,获得积分10
9分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792920
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804229