Platelet Count Trajectory and Mortality in Septic Shock: A Retrospective Cohort Study

感染性休克 医学 回顾性队列研究 比例危险模型 重症监护室 队列 休克(循环) 危险系数 内科学 逻辑回归 急诊医学 败血症 置信区间
作者
Neelan Sriranjan,Brett L. Houston,Emily Rimmer,Chantalle Menard,Murdoch Leeies,Allan Garland,Ryan Zarychanski,Steve Doucette,Donald S. Houston
出处
期刊:Blood [Elsevier BV]
卷期号:136 (Supplement 1): 16-16 被引量:1
标识
DOI:10.1182/blood-2020-143392
摘要

Background: In Canada, septic shock accounts for approximately 30,000 hospitalizations annually and is associated with a mortality rate of 30%. Thrombocytopenia in septic shock is associated with a poor prognosis including increased length of stay, longer duration of organ support, increased major bleeding events and mortality. The trajectory of the platelet count over time in patients with septic shock has not been well-studied. We hypothesized that the platelet count trajectory in septic shock can identify distinct clinical groups and is an independent predictor of 30-day mortality. Objectives: 1) To identify groups of patients with distinct platelet count trajectories; 2) To evaluate patient and illness factors associated with platelet count trajectories; and 3) To estimate the association of platelet count trajectory with mortality patients with septic shock. Methods: We performed a retrospective cohort study of adult patients admitted with septic shock to an intensive care unit (ICU) in Winnipeg, Canada between 2006-2014. We used group-based trajectory analysis to analyze the trend of platelet count over the first seven days of ICU admission to group patients with similar platelet trajectories. Group-based trajectory analysis is a statistical method that analyzes the pattern of a variable over time and allows distinct groups with similar trajectories to arise from the data. We utilized both the Bayesian Information Criterion (BIC) and clinical validity characteristics to choose the most suitable trajectory model. We developed a multinomial logistic regression model to associate patient characteristics with platelet count trajectories. We created a multivariable Cox proportional hazard model adjusted for age, sex, Acute Physiology and Chronic Health Evaluation (APACHE) II score, comorbidities, site or source of infection, and time to first appropriate antimicrobial to examine the association between platelet count trajectory and 30-day mortality. Results: Our study cohort included 913 patients with septic shock. The favoured trajectory model identified six distinct trajectories (Figure 1) using the platelet count over the first 7 days of ICU admission. We found that the number of organ failures on day 1was independently associated with platelet count trajectory, while other characteristics were not. The 30-day mortality of the entire cohort was 26.2% and ranged from 16.4% in group 1 (rising platelet count) to 44.4% in group 6 (high platelet count throughout). In the multivariable Cox proportional hazard model, compared with group 2 (thrombocytopenia), group 4 (high normal platelet count) was independently associated with a reduced risk of death at 30 days (Hazard Ratio (HR) 0.33, p = 0.002). The trajectory group with thrombocytosis (group 6) was associated with an increased risk of death at 30 days (HR 3.24, p=0.48) however the small number in this group limits the generalizability of this finding. Conclusion: We identified 6 distinct and clinically relevant platelet count trajectories in critically ill patients with septic shock. Platelet count trajectory was associated with the number of organ failures on day 1. Our study confirms that thrombocytopenia is associated with a worse prognosis as other trajectories with higher platelet count were associated with a lower risk of death. While it is well recognized that thrombocytopenia is associated with adverse outcomes in patients with septic shock, it is not known whether other patterns of the platelet trajectory such as thrombocytosis are similarly clinically important. Further studies are needed to fully characterize the impact platelet count trajectory on outcomes in patients with septic shock. The interplay between platelet count trajectory and other parameters (such as the white blood cell count trajectory, or INR trajectory) may have a more predictive role in evaluating prognosis in sepsis. Disclosures No relevant conflicts of interest to declare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一点完成签到 ,获得积分10
刚刚
伊一完成签到,获得积分10
1秒前
剧院的饭桶完成签到,获得积分10
1秒前
生动的小白菜完成签到,获得积分10
1秒前
2秒前
小苔藓完成签到,获得积分10
2秒前
982289172完成签到,获得积分10
2秒前
3秒前
傅傅完成签到,获得积分10
3秒前
teadan完成签到,获得积分10
4秒前
张渔歌完成签到,获得积分10
4秒前
鸽子努力不鸽完成签到 ,获得积分10
4秒前
天真依玉完成签到,获得积分10
5秒前
舒适的雁风完成签到,获得积分10
7秒前
开心完成签到 ,获得积分10
7秒前
7秒前
兴奋小丸子完成签到,获得积分10
7秒前
标致冰海完成签到 ,获得积分10
8秒前
杨冰完成签到,获得积分10
8秒前
8秒前
阳佟天川完成签到,获得积分10
9秒前
coffeexx完成签到,获得积分10
9秒前
天天快乐应助贾不可采纳,获得10
9秒前
feitian201861完成签到,获得积分10
9秒前
陈老太完成签到 ,获得积分10
10秒前
elliot完成签到,获得积分10
10秒前
yzl科研爱我完成签到,获得积分10
10秒前
Charles完成签到,获得积分10
12秒前
隐形觅翠完成签到,获得积分10
13秒前
一个O完成签到,获得积分10
13秒前
YY完成签到,获得积分10
13秒前
乔qiao完成签到,获得积分10
13秒前
alexlpb完成签到,获得积分0
14秒前
复杂的柜子完成签到,获得积分20
15秒前
可研发布了新的文献求助10
16秒前
小于完成签到,获得积分10
16秒前
longer完成签到 ,获得积分10
16秒前
支白薇完成签到 ,获得积分10
17秒前
竹精灵完成签到,获得积分10
17秒前
踏雪飞鸿完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3687031
求助须知:如何正确求助?哪些是违规求助? 3237288
关于积分的说明 9830115
捐赠科研通 2949223
什么是DOI,文献DOI怎么找? 1617266
邀请新用户注册赠送积分活动 764208
科研通“疑难数据库(出版商)”最低求助积分说明 738360