An Automated Accident Causal Scenario Identification Method for Fully Automatic Operation System Based on STPA

计算机科学 鉴定(生物学) 过程(计算) 数据挖掘 控制(管理) 人工智能 植物 生物 操作系统
作者
Fei Yan,Junqiao Ma,Mo Li,Ru Niu,Tao Tang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 11051-11064 被引量:8
标识
DOI:10.1109/access.2021.3050472
摘要

Accident causal scenario can describe the process logic of the accident clearly and concretely from the perspective of the control mechanism. Only by improving the quality of the causal scenario can the effective control measures be taken. Combining the technical characteristics of the fully automatic operation (FAO) system, the paper proposes an automated accident causal scenario identification method for FAO system based on the System-Theoretic Process Analysis (STPA) method. Aiming at the problem that there are too many layers in the hierarchical control structure diagram of STPA method, which makes it impossible to effectively trace the cause and the problem that the basic control structure model only contains the control structural information and lacks the cause information, a new basic control structure model is defined to model multiple control processes in time sequence, and then the paper extends it from four aspects: control action, input variables, external disturbance, and synchronous timing to add more system cause information. For the lack of a unified standard description problem for the causal scenario, a four-stage causal scenario description method is defined, this paper has developed the first timing, non-first timing, synchronous timing, and external disturbance causal scenario search rules to ensure the automatic identification of the causal scenarios. Applying the automated safety analysis method to the case study of the operational scenarios of parking in a station of Beijing Yanfang Line, the automated identification of related causal scenarios is successfully completed through the Auto-STPA platform, and corresponding safety requirements are added. The feasibility of the method and the applicability to the analysis of operational scenarios are verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一研为腚发布了新的文献求助10
1秒前
貊养浩完成签到,获得积分20
1秒前
Crunny关注了科研通微信公众号
1秒前
2秒前
光亮的立果完成签到,获得积分10
3秒前
英姑应助无限钻石采纳,获得10
3秒前
Rivarez应助阿尔法贝塔采纳,获得30
3秒前
GCS12发布了新的文献求助10
5秒前
程冯冯发布了新的文献求助10
5秒前
llllllllllll发布了新的文献求助10
7秒前
浪费发布了新的文献求助10
7秒前
研友_VZG7GZ应助干雅柏采纳,获得10
7秒前
科研通AI5应助nannan采纳,获得10
7秒前
田様应助明澜采纳,获得10
8秒前
11秒前
酷波er应助liuxin采纳,获得10
14秒前
Huangy000完成签到,获得积分10
15秒前
无限钻石发布了新的文献求助10
16秒前
17秒前
Orange应助程冯冯采纳,获得10
19秒前
Crunny发布了新的文献求助10
22秒前
LegendThree完成签到,获得积分10
23秒前
24秒前
李爱国应助嵇丹雪采纳,获得10
25秒前
Ava应助666采纳,获得10
25秒前
26秒前
科研通AI5应助llllllllllll采纳,获得10
26秒前
搜集达人应助深情的翠芙采纳,获得10
26秒前
搜集达人应助Aida采纳,获得10
29秒前
大肥羊发布了新的文献求助10
30秒前
zasideler完成签到,获得积分10
31秒前
yanmh完成签到,获得积分10
31秒前
31秒前
nannan发布了新的文献求助10
32秒前
跳跃卿完成签到 ,获得积分10
32秒前
万能图书馆应助蔺瑾瑜采纳,获得10
33秒前
33秒前
34秒前
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727881
求助须知:如何正确求助?哪些是违规求助? 3272958
关于积分的说明 9979258
捐赠科研通 2988340
什么是DOI,文献DOI怎么找? 1639535
邀请新用户注册赠送积分活动 778803
科研通“疑难数据库(出版商)”最低求助积分说明 747817