清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Designed synthesis of perylene diimide-based supramolecular heterojunction with g-C3N4@MIL-125(Ti): insight into photocatalytic performance and mechanism

光降解 光催化 二亚胺 材料科学 异质结 甲基橙 可见光谱 光化学 超分子化学 催化作用 光电子学 化学 晶体结构 有机化学 分子
作者
Hanieh Fakhri,Mahdi Farzadkia,Varsha Srivastava,Mika Sillanpää
出处
期刊:Journal of Materials Science: Materials in Electronics [Springer Nature]
卷期号:32 (1): 19-32 被引量:7
标识
DOI:10.1007/s10854-020-04311-9
摘要

A new supramolecular semiconductor perylene diimide (PDI)-functionalized g-C3N4@MIL-125(Ti) (is nominated as PC@MIL-125(Ti)) was prepared through in situ growth of MIL-125(Ti) on PDI-functionalized g-C3N4 (PC) sheets. This heterojunction was used for photodegradation of methyl orange (MO) pollutants under visible light illumination. This process was sensitive to the pH of solution, dosage of PC and the presence of the various scavengers. The 30PC@MIL-125(Ti) as optimum photocatalyst indicated synergistic effects on photodegradation of MO, where the maximum photocatalytic efficiency was obtained 100% under 90 min irradiation that was higher than pure PC and MIL-125(Ti). Herein, the PDI component acts as a powerful light harvester and improves absorption of visible light where PC@MIL-125(Ti) has a lower bandgap than g-C3N4@MIL-125(Ti). Moreover, proper contact between PDI and g-C3N4 sheets constructs the highway for easy and fast electron transfer that verified by photoluminescence analysis. The sum of these factors resulted in the superior photocatalytic ability of this heterojunction, where the TOC analysis confirmed 91% mineralization for MO. Besides, according to the results of LC-MASS analysis, the azo cleavage and dealkylation were main photodegradation pathways. By considering superior photocatalytic performance of this heterojunction, this work can be a guideline for the development of PDI-based supramolecular organic–inorganic photocatalyst.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangfaqing942完成签到 ,获得积分10
13秒前
19秒前
NexusExplorer应助帮帮我好吗采纳,获得10
43秒前
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
vitamin完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
文艺的初南完成签到 ,获得积分10
3分钟前
3分钟前
xun完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
widesky777完成签到 ,获得积分0
5分钟前
5分钟前
拓跋雨梅完成签到 ,获得积分0
5分钟前
慕青应助帮帮我好吗采纳,获得10
6分钟前
实力不允许完成签到 ,获得积分10
6分钟前
冯依梦完成签到 ,获得积分10
6分钟前
music007完成签到,获得积分10
6分钟前
田雨完成签到 ,获得积分0
7分钟前
7分钟前
7分钟前
OCDer完成签到,获得积分0
7分钟前
小AB完成签到,获得积分20
7分钟前
科研通AI2S应助OCDer采纳,获得10
7分钟前
7分钟前
8分钟前
寒冷的断秋完成签到,获得积分10
8分钟前
cy0824完成签到 ,获得积分10
8分钟前
领导范儿应助帮帮我好吗采纳,获得10
8分钟前
8分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137028
求助须知:如何正确求助?哪些是违规求助? 2788002
关于积分的说明 7784218
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625513
版权声明 600997