Protective Effect of Tangeretin and 5-Hydroxy-6,7,8,3′,4′-Pentamethoxyflavone on Collagen-Induced Arthritis by Inhibiting Autophagy via Activation of the ROS-AKT/mTOR Signaling Pathway
Rheumatoid arthritis (RA) is an autoimmune disease characterized by long duration and repeated relapse. This study explored the preventive effect of tangeretin (TAN) and 5-hydroxy-6,7,8,3′,4′-pentamethoxyflavone (5-HPMF) on RA, and the underlying molecular mechanism based on a rat model stimulated by bovine type II collagen (BIIC). After the intervention of TAN or 5-HPMF (TAN/5-HPMF) for 5 weeks, the RA lesions and autophagy levels of the synovial tissue were significantly reduced, and the ROS content and HO-1 expression level were down-regulated simultaneously. The relative expression levels of p-AKT and p-mTOR were down-regulated after TAN/5-HPMF feeding. Meanwhile, the relative expression level of p62 increased by more than two-fold for TAN/5-HPMF treated rats at 200 mg/kg BW comparing with those in BIIC group. Results of immunofluorescence staining and Western blotting further confirmed that TAN/5-HPMF treatment reduced BIIC-induced conversion from LC3I to LC3II. Observations under transmission electron microscope also demonstrated that the autophagy level was reduced upon TAN/5-HPMF intervention. Collectively, these results revealed that TAN and 5-HPMF prevented the pathological process of BIIC-stimulated arthritis through inhibiting the autophagy of synovial cells, achieved via the ROS-AKT/mTOR signal axis. Thus, our findings confirmed the protective potential of TAN and 5-HPMF for RA disease.