Shear-responsive peptide/siRNA complexes as lung-targeting gene vectors

基因沉默 阳离子聚合 生物物理学 体内 基因 化学 小干扰RNA 分子生物学 细胞生物学 生物 转染 生物化学 医学 内科学 高分子化学 生物技术
作者
Dongxiao Yin,Mengjie Zhang,Jiaxin Chen,Yuanyu Huang,Dehai Liang
出处
期刊:Chinese Chemical Letters [Elsevier]
卷期号:32 (5): 1731-1736 被引量:11
标识
DOI:10.1016/j.cclet.2020.12.005
摘要

All de novo designed cationic peptides can form complexes with siRNA and effectively accumulate in lung. However, only the peptide/siRNA complexes that exhibit weak interaction with serum components and can be broken down at shear rate above certain value avoid the inflammation and death caused by pulmonary embolism. Particles administrated intravenously will pass through the pulmonary capillary network before being distributed to the body. Therefore, fabrication of vectors sensitive to blood shear and active with blood components should be a practical approach to develop lung-targeting gene carriers self-regulated by circulatory system. In this work, we designed a series of cationic peptides with the same charge density but varying hydrophobicity and capacity to form hydrogen bonds, and investigated their ability to form complexes with siRNA, the behaviours of peptide/siRNA complexes in the presence of serum under shear, and the lung-targeting efficacy of the complexes regulated by blood. The hydrophobic interaction controls the complexation between peptide and siRNA, while the hydrogen bonds are responsible for the binding of peptides to the serum components in blood. In vivo tests show that all the peptide/siRNA complexes can accumulate in lung. However, only the complexes that exhibit weak interaction with serum components and can be broken down by shear avoid the inflammation and death caused by pulmonary embolism. Moreover, the peptide with strong hydrophobicity can retain siRNA in lung without early release of the cargo. Our study provides a step toward the development of adaptive gene carriers under the regulation of circulatory system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦瘦发布了新的文献求助10
刚刚
2秒前
潇潇完成签到 ,获得积分10
2秒前
小苏应助Sherman采纳,获得10
3秒前
脑洞疼应助明月采纳,获得10
3秒前
xiaoran发布了新的文献求助10
4秒前
犹豫的箴完成签到 ,获得积分10
4秒前
愤怒的qiang应助龚成明采纳,获得10
5秒前
脑洞疼应助清爽的雅青采纳,获得10
5秒前
wxiao完成签到,获得积分10
5秒前
5秒前
桐桐应助健忘的初翠采纳,获得10
5秒前
6秒前
7秒前
在水一方应助快乐的莹芝采纳,获得10
7秒前
vv完成签到,获得积分10
7秒前
科研通AI5应助阔达的星月采纳,获得10
8秒前
九卫完成签到,获得积分10
8秒前
桐桐应助初夏采纳,获得10
11秒前
政治完成签到 ,获得积分10
11秒前
sunshine发布了新的文献求助10
11秒前
Lucas应助需不需曜采纳,获得10
13秒前
14秒前
16秒前
16秒前
17秒前
17秒前
星辰大海应助W29采纳,获得10
18秒前
深情安青应助ocean采纳,获得10
18秒前
科研帽发布了新的文献求助10
18秒前
sunshine完成签到,获得积分10
20秒前
wanci应助酷酷的依波采纳,获得10
21秒前
21秒前
21秒前
23秒前
CodeCraft应助杨迅采纳,获得10
23秒前
23秒前
大卷发布了新的文献求助10
23秒前
SciGPT应助一休采纳,获得10
24秒前
瑞思摆发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515965
求助须知:如何正确求助?哪些是违规求助? 3098115
关于积分的说明 9238144
捐赠科研通 2793134
什么是DOI,文献DOI怎么找? 1532862
邀请新用户注册赠送积分活动 712391
科研通“疑难数据库(出版商)”最低求助积分说明 707256