Explainable Deep Learning for SAR Data

人工智能 计算机科学 合成孔径雷达 深度学习 模式识别(心理学) 特征学习 卷积神经网络 光谱图 计算机视觉 遥感 地质学
作者
Mihai Datcu,Vlad Andrei,Corneliu Octavian Dumitru,Zhongling Huang,Gottfried Schwarz,Juanping Zhao
链接
摘要

When understanding the single polarization SAR images with deep learning, the texture features are usually learned automatically from the intensity. As an active microwave imaging, however, the complex Synthetic Aperture Radar (SAR) images not only contain the amplitude, but also the phase information, which is important and useful for interpretation. The time-frequency analysis (TFA) provides a physical understanding of the backscattering properties for each pixel in complex SAR images. As a consequence, a novel end-to-end deep learning framework to make the best use of both the physical properties of the objects and the spatial texture of the images is proposed. We start with a convolutional auto-encoder to learn the frequency features from each sub-spectrogram obtained by TFA, and then align them spatially. Next, the spatially aligned features in frequency domain and the low-level texture features obtained from a pre-trained SAR specific network in spatial domain are concatenated as the input of a post-processing residual network to learn spatial-frequency joint knowledge. The experiments were done on a large number of TerraSAR-X images. The proposed framework keeps the full information of complex-value SAR images, making a significant improvement compared with other spatial based deep learning methods in SAR image interpretation. In order to learn the latent space that governs the backscatter values in SAR-imagery we explored the dimensionality reduction properties of variational auto-encoders (VAE). By taking both channels of the SAR data as input and mapping them to a compact, lower-dimensional representation, we constructed a single feature-vector consisting of the parameters of the latent space. This information was then fed to a classifier such as k-NN or SVM (Support Vector machine). Experiments on Sentinel-1 GRDH data using VV/VH polarizations showcased the capability of this method to extract the relevant features of the images, achieving an average precision/recall in the case of k-NN of 0.97 and 0.96, respectively. Extracting physical scattering signatures from non-full-polarimetric images is of significant importance, but very challengeable. To achieve this goal and meanwhile exploring potentials of polarimetric SAR (PolSAR) images with different polarization modes and their combinations on this task, we proposed a contrastive regulated convolutional neural network (CNN) in complex domain. This method is to learn a physical-interpretable deep learning model from original scattering matrixes. The ground-truth is computed automatically by leveraging the Cloude and Pottier’s H-α division plane, which leads this work to an unsupervised learning mechanism. Considering the confused division boundary, a contrastive regulated term is computed in complex domain and added to the selected optimal loss function with a balancing trade-off coefficient. Experiments on DLR’s airborne, L-band F-SAR image demonstrate the feasibility of extracting physical scattering signatures from non-full-polarimetric SAR images. Moreover, the capabilities of different polarized images for achieving this are comprehensively analyzed and discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ph完成签到,获得积分10
刚刚
刚刚
刚刚
FartKing完成签到,获得积分10
刚刚
嘟嘟发布了新的文献求助30
1秒前
CipherSage应助小林采纳,获得10
3秒前
houbinghua发布了新的文献求助10
4秒前
6秒前
李梦琦发布了新的文献求助10
6秒前
儒雅八宝粥完成签到 ,获得积分10
7秒前
科研通AI2S应助何小熊采纳,获得10
7秒前
阳光冰颜完成签到,获得积分10
9秒前
英俊的铭应助黄春流采纳,获得10
9秒前
纯真的雁山完成签到,获得积分10
9秒前
天天快乐应助李梦琦采纳,获得10
11秒前
Jackson完成签到,获得积分10
13秒前
骆子军完成签到 ,获得积分10
13秒前
14秒前
Alchemist发布了新的文献求助10
15秒前
酷波er应助arsenal采纳,获得10
16秒前
16秒前
Frida完成签到,获得积分10
16秒前
yang完成签到,获得积分10
19秒前
谨慎惋庭完成签到,获得积分10
19秒前
小鱼爱吃肉应助个性毛衣采纳,获得10
20秒前
研友_LB1rk8完成签到,获得积分10
22秒前
23秒前
大方的契完成签到,获得积分20
24秒前
24秒前
安静无招完成签到 ,获得积分10
24秒前
程依婷完成签到,获得积分10
25秒前
程依婷发布了新的文献求助10
28秒前
85搏一博应助猪猪侠采纳,获得10
30秒前
123456完成签到,获得积分10
31秒前
哟哟哟完成签到,获得积分10
33秒前
gaugua完成签到,获得积分10
33秒前
qinqiny完成签到 ,获得积分10
36秒前
研友_VZG7GZ应助家稚晴采纳,获得10
36秒前
沐曦发布了新的文献求助10
36秒前
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312235
求助须知:如何正确求助?哪些是违规求助? 2944833
关于积分的说明 8521765
捐赠科研通 2620550
什么是DOI,文献DOI怎么找? 1432948
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134