亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable Deep Learning for SAR Data

人工智能 计算机科学 合成孔径雷达 深度学习 模式识别(心理学) 特征学习 卷积神经网络 光谱图 计算机视觉 遥感 地质学
作者
Mihai Datcu,Vlad Andrei,Corneliu Octavian Dumitru,Zhongling Huang,Gottfried Schwarz,Juanping Zhao
链接
摘要

When understanding the single polarization SAR images with deep learning, the texture features are usually learned automatically from the intensity. As an active microwave imaging, however, the complex Synthetic Aperture Radar (SAR) images not only contain the amplitude, but also the phase information, which is important and useful for interpretation. The time-frequency analysis (TFA) provides a physical understanding of the backscattering properties for each pixel in complex SAR images. As a consequence, a novel end-to-end deep learning framework to make the best use of both the physical properties of the objects and the spatial texture of the images is proposed. We start with a convolutional auto-encoder to learn the frequency features from each sub-spectrogram obtained by TFA, and then align them spatially. Next, the spatially aligned features in frequency domain and the low-level texture features obtained from a pre-trained SAR specific network in spatial domain are concatenated as the input of a post-processing residual network to learn spatial-frequency joint knowledge. The experiments were done on a large number of TerraSAR-X images. The proposed framework keeps the full information of complex-value SAR images, making a significant improvement compared with other spatial based deep learning methods in SAR image interpretation. In order to learn the latent space that governs the backscatter values in SAR-imagery we explored the dimensionality reduction properties of variational auto-encoders (VAE). By taking both channels of the SAR data as input and mapping them to a compact, lower-dimensional representation, we constructed a single feature-vector consisting of the parameters of the latent space. This information was then fed to a classifier such as k-NN or SVM (Support Vector machine). Experiments on Sentinel-1 GRDH data using VV/VH polarizations showcased the capability of this method to extract the relevant features of the images, achieving an average precision/recall in the case of k-NN of 0.97 and 0.96, respectively. Extracting physical scattering signatures from non-full-polarimetric images is of significant importance, but very challengeable. To achieve this goal and meanwhile exploring potentials of polarimetric SAR (PolSAR) images with different polarization modes and their combinations on this task, we proposed a contrastive regulated convolutional neural network (CNN) in complex domain. This method is to learn a physical-interpretable deep learning model from original scattering matrixes. The ground-truth is computed automatically by leveraging the Cloude and Pottier’s H-α division plane, which leads this work to an unsupervised learning mechanism. Considering the confused division boundary, a contrastive regulated term is computed in complex domain and added to the selected optimal loss function with a balancing trade-off coefficient. Experiments on DLR’s airborne, L-band F-SAR image demonstrate the feasibility of extracting physical scattering signatures from non-full-polarimetric SAR images. Moreover, the capabilities of different polarized images for achieving this are comprehensively analyzed and discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江月年发布了新的文献求助10
1秒前
meow完成签到 ,获得积分10
5秒前
小袁完成签到 ,获得积分10
15秒前
小程同学完成签到 ,获得积分10
15秒前
boyue完成签到,获得积分10
18秒前
优雅苑睐完成签到,获得积分10
27秒前
29秒前
jeremyher完成签到,获得积分10
29秒前
请和我吃饭完成签到,获得积分10
34秒前
含蓄问安发布了新的文献求助30
34秒前
FFFFF完成签到 ,获得积分0
37秒前
39秒前
39秒前
40秒前
星辰大海应助科研通管家采纳,获得10
42秒前
科目三应助科研通管家采纳,获得10
42秒前
42秒前
徐zhipei完成签到 ,获得积分10
47秒前
47秒前
48秒前
青木完成签到 ,获得积分10
49秒前
糖糖唐发布了新的文献求助10
51秒前
举个栗子完成签到,获得积分10
52秒前
江月年发布了新的文献求助10
53秒前
子凡完成签到 ,获得积分10
55秒前
wanci应助眼镜胖子采纳,获得10
56秒前
超级微笑完成签到 ,获得积分10
1分钟前
害羞便当完成签到 ,获得积分10
1分钟前
欣欣子完成签到 ,获得积分10
1分钟前
gc完成签到 ,获得积分10
1分钟前
烟花应助yyyalles采纳,获得10
1分钟前
1分钟前
1分钟前
眼镜胖子发布了新的文献求助10
1分钟前
DrW1111发布了新的文献求助10
1分钟前
1分钟前
兴奋雅寒发布了新的文献求助10
1分钟前
爆米花应助Q123ba叭采纳,获得10
1分钟前
1分钟前
彦卿完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176