Stroke Prognostic Scores and Data-Driven Prediction of Clinical Outcomes After Acute Ischemic Stroke

医学 冲程(发动机) 接收机工作特性 队列 回顾性队列研究 内科学 物理疗法 急诊医学 工程类 机械工程
作者
Koutarou Matsumoto,Yasunobu Nohara,Hidehisa Soejima,Toshiro Yonehara,Naoki Nakashima,Masahiro Kamouchi
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:51 (5): 1477-1483 被引量:62
标识
DOI:10.1161/strokeaha.119.027300
摘要

Background and Purpose— Several stroke prognostic scores have been developed to predict clinical outcomes after stroke. This study aimed to develop and validate novel data-driven predictive models for clinical outcomes by referring to previous prognostic scores in patients with acute ischemic stroke in a real-world setting. Methods— We used retrospective data of 4237 patients with acute ischemic stroke who were hospitalized in a single stroke center in Japan between January 2012 and August 2017. We first validated point-based stroke prognostic scores (preadmission comorbidities, level of consciousness, age, and neurological deficit [PLAN] score, ischemic stroke predictive risk score [IScore], and acute stroke registry and analysis of Lausanne [ASTRAL] score in all patients; Houston intraarterial recanalization therapy [HIAT] score, totaled health risks in vascular events [THRIVE] score, and stroke prognostication using age and National Institutes of Health Stroke Scale-100 [SPAN-100] in patients who received reperfusion therapy) in our cohort. We then developed predictive models using all available data by linear regression or decision tree ensembles (random forest and gradient boosting decision tree) and evaluated their area under the receiver operating characteristic curve for clinical outcomes after repeated random splits. Results— The mean (SD) age of the patients was 74.7 (12.9) years and 58.3% were men. Area under the receiver operating characteristic curves (95% CIs) of prognostic scores in our cohort were 0.92 PLAN score (0.90–0.93), 0.86 for IScore (0.85–0.87), 0.85 for ASTRAL score (0.83–0.86), 0.69 for HIAT score (0.62–0.75), 0.70 for THRIVE score (0.64–0.76), and 0.70 for SPAN-100 (0.63–0.76) for poor functional outcomes, and 0.87 for PLAN score (0.85–0.90), 0.88 for IScore (0.86–0.91), and 0.88 ASTRAL score (0.85–0.91) for in-hospital mortality. Internal validation of data-driven prediction models showed that their area under the receiver operating characteristic curves ranged between 0.88 and 0.94 for poor functional outcomes and between 0.84 and 0.88 for in-hospital mortality. Ensemble models of a decision tree tended to outperform linear regression models in predicting poor functional outcomes but not in predicting in-hospital mortality. Conclusions— Stroke prognostic scores perform well in predicting clinical outcomes after stroke. Data-driven models may be an alternative tool for predicting poststroke clinical outcomes in a real-world setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方远锋完成签到,获得积分10
1秒前
众人皆醉我独醒完成签到,获得积分10
1秒前
1秒前
tyj完成签到,获得积分10
2秒前
小蘑菇应助somous采纳,获得10
2秒前
迈克老狼发布了新的文献求助10
6秒前
hadfunsix完成签到 ,获得积分10
9秒前
666完成签到 ,获得积分10
11秒前
Cola完成签到,获得积分10
12秒前
cen完成签到,获得积分10
12秒前
无知者飞速完成签到,获得积分10
14秒前
Hancock完成签到 ,获得积分10
14秒前
17秒前
SciGPT应助love采纳,获得10
19秒前
20秒前
科研通AI2S应助浅斟低唱采纳,获得10
20秒前
陈思完成签到,获得积分10
20秒前
Febrine0502完成签到,获得积分10
21秒前
加加完成签到,获得积分10
21秒前
21秒前
朴素映阳发布了新的文献求助10
23秒前
酷波er应助yangyang采纳,获得10
23秒前
进取拼搏发布了新的文献求助10
24秒前
忧伤的冰薇完成签到 ,获得积分10
25秒前
Aurora.H发布了新的文献求助30
26秒前
27秒前
饱满秋白完成签到,获得积分20
28秒前
29秒前
31秒前
32秒前
yangyang完成签到,获得积分10
32秒前
somous发布了新的文献求助10
33秒前
有一颗卤蛋完成签到,获得积分10
33秒前
饱满秋白发布了新的文献求助20
34秒前
linllll完成签到,获得积分10
35秒前
yangyang发布了新的文献求助10
36秒前
常大有发布了新的文献求助10
36秒前
Yimi完成签到,获得积分10
37秒前
ooook完成签到 ,获得积分10
41秒前
小北完成签到,获得积分10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674826
求助须知:如何正确求助?哪些是违规求助? 3229899
关于积分的说明 9787740
捐赠科研通 2940590
什么是DOI,文献DOI怎么找? 1612049
邀请新用户注册赠送积分活动 761064
科研通“疑难数据库(出版商)”最低求助积分说明 736552