亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature-level fusion approaches based on multimodal EEG data for depression recognition

计算机科学 支持向量机 脑电图 人工智能 模式识别(心理学) 加权 模态(人机交互) 分类器(UML) 模式 语音识别 特征(语言学) 特征向量 心理学 医学 社会学 哲学 放射科 精神科 语言学 社会科学
作者
Hanshu Cai,Zhidiao Qu,Zhe Li,Yi Zhang,Xiping Hu,Bin Hu
出处
期刊:Information Fusion [Elsevier]
卷期号:59: 127-138 被引量:215
标识
DOI:10.1016/j.inffus.2020.01.008
摘要

This study aimed to construct a novel multimodal model by fusing different electroencephalogram (EEG) data sources, which were under neutral, negative and positive audio stimulation, to discriminate between depressed patients and normal controls. The EEG data of different modalities were fused using a feature-level fusion technique to construct a depression recognition model. The EEG signals of 86 depressed patients and 92 normal controls were recorded simultaneously while receiving different audio stimuli. Then, from the EEG signals of each modality, linear and nonlinear features were extracted and selected to obtain features of each modality. In addition, a linear combination technique was used to fuse the EEG features of different modalities to build a global feature vector and find several powerful features. Furthermore, genetic algorithms were used to perform feature weighting to improve the overall performance of the recognition framework. The classification accuracy of each classifier, namely the k-nearest neighbor (KNN), decision tree (DT), and support vector machine (SVM), was compared, and the results were encouraging. The highest classification accuracy of 86.98% was obtained by the KNN classifier in the fusion of positive and negative audio stimuli, demonstrating that the fusion modality could achieve higher depression recognition accuracy rate compared with the individual modality schemes. This study may provide an additional tool for identifying depression patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ma发布了新的文献求助10
1秒前
6秒前
hs是坏蛋完成签到,获得积分10
11秒前
21秒前
43秒前
1分钟前
古月发布了新的文献求助10
1分钟前
烟花应助鹅鹅鹅采纳,获得30
1分钟前
1分钟前
鹅鹅鹅完成签到,获得积分10
1分钟前
鹅鹅鹅发布了新的文献求助30
1分钟前
1分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
2分钟前
安静的谷丝完成签到,获得积分10
2分钟前
蓝色隐莲完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
爆米花应助Su采纳,获得10
3分钟前
科研通AI2S应助天才小熊猫采纳,获得10
3分钟前
3分钟前
Su发布了新的文献求助10
3分钟前
3分钟前
Su完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Wang完成签到 ,获得积分20
3分钟前
4分钟前
4分钟前
CCD完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
魔幻诗兰发布了新的文献求助10
4分钟前
天才小熊猫完成签到,获得积分10
4分钟前
4分钟前
魔幻诗兰完成签到,获得积分10
4分钟前
LJL完成签到 ,获得积分10
4分钟前
4分钟前
劳健龙完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229679
求助须知:如何正确求助?哪些是违规求助? 2877234
关于积分的说明 8198555
捐赠科研通 2544698
什么是DOI,文献DOI怎么找? 1374568
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621806