Identification of a RNA-seq-based signature to improve prognostics for uterine sarcoma

列线图 比例危险模型 医学 肿瘤科 内科学 生存分析 基因签名 肉瘤 单变量 多元分析 阶段(地层学) 基因 多元统计 病理 基因表达 生物 遗传学 统计 古生物学 数学
作者
Jianguo Zhou,Hetong Zhao,Sanli Jin,Tao Xu,Hu Ma
出处
期刊:Gynecologic Oncology [Elsevier BV]
卷期号:155 (3): 499-507 被引量:21
标识
DOI:10.1016/j.ygyno.2019.08.033
摘要

Objective Uterine sarcoma (US) is a highly malignant cancer with poor prognosis and high mortality. This study focused on the identification of a RNA-Seq expression signature for prognosis prediction in uterine sarcoma. Methods We obtained RNA-Seq expression profiles from The Cancer Genome Atlas database, and differentially expressed genes were identified between US tissues and normal tissues. Univariate Cox proportional hazards regression analysis and LASSO Cox model were performed to identify and construct the prognostic gene signature. Time-dependent receiver operating characteristic, Kaplan-Meier curve and multivariate Cox regression analysis were used to assess the prognostic capacity of the six-gene signature. The nomogram was developed including prognostic signature and independent clinical factors to predict the overall survival (OS) of US patients. The functional enrichment and somatic mutation analysis were also analyzed by bioinformatics to understand the molecular mechanisms. Results This study identified a prognostic signature based on 6 genes: FGF23, TLX2, TIFAB, RNF223, HIST1H3A and AADACL4. In the training group, the median OS in the high- and low-risk groups was 19.6 vs 88.1 months (HR, 0.1412, 95% CI: 0.03295 - 0.6054; P = 0.002), respectively. In the testing group, the median OS in the high- and low-risk groups were 30 vs NR (not reach) months (HR, <0.0001, 95% CI: 0 - inf; P = 0.03). In all of patients, the low-risk group showed significant better survival compared with the high-risk group in OS, PFI, DSS and DFI. The nomogram based on the gene signature and radiation therapy was developed and successfully predicted the OS of US patients. The patients in the high-risk group displayed distinct mutation signatures comparing to patients in the low-risk group. Functional enrichment analysis indicated that the signature can play a vital role in cancer-related biological processes. Conclusion Our study established a novel 6-gene signature and nomogram which could improve prognosis prediction in patients with US.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助夏夏采纳,获得10
刚刚
荼蘼发布了新的文献求助10
1秒前
山鸡完成签到,获得积分20
1秒前
2秒前
2秒前
miles发布了新的文献求助10
2秒前
vii发布了新的文献求助10
2秒前
2秒前
2秒前
天天快乐应助研知采纳,获得10
3秒前
Elaine发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
幸福纹完成签到,获得积分20
5秒前
5秒前
刘扬完成签到,获得积分20
5秒前
Grayball应助山鸡采纳,获得10
5秒前
HMR完成签到 ,获得积分10
6秒前
6秒前
6秒前
肖肖发布了新的文献求助10
7秒前
7秒前
周小鱼发布了新的文献求助10
8秒前
大幂幂发布了新的文献求助10
9秒前
9秒前
香蕉觅云应助又夏采纳,获得10
9秒前
CodeCraft应助小杨采纳,获得10
9秒前
幸福纹发布了新的文献求助10
9秒前
S77发布了新的文献求助10
10秒前
董子瑜发布了新的文献求助10
10秒前
huma1110完成签到,获得积分10
11秒前
33发布了新的文献求助30
11秒前
绺妙完成签到,获得积分20
12秒前
MADAO发布了新的文献求助20
12秒前
肖肖完成签到,获得积分10
13秒前
NZHMD发布了新的文献求助10
14秒前
ahsh发布了新的文献求助10
15秒前
科研通AI5应助RAFA采纳,获得10
15秒前
朴素雁凡发布了新的文献求助10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744718
求助须知:如何正确求助?哪些是违规求助? 3287712
关于积分的说明 10054740
捐赠科研通 3003914
什么是DOI,文献DOI怎么找? 1649258
邀请新用户注册赠送积分活动 785217
科研通“疑难数据库(出版商)”最低求助积分说明 750960