Modeling the Interface between Lithium Metal and Its Native Oxide

材料科学 无定形固体 锂(药物) 化学物理 金属 氧化物 结合能 分子动力学 表面能 纳米技术 计算化学 结晶学 原子物理学 化学 复合材料 物理 内分泌学 冶金 医学
作者
Jeffrey S. Lowe,Donald J. Siegel
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (41): 46015-46026 被引量:33
标识
DOI:10.1021/acsami.0c12468
摘要

Owing to their high theoretical capacities, batteries that employ lithium (Li) metal as the negative electrode are attractive technologies for next-generation energy storage. However, the successful implementation of lithium metal batteries is limited by several factors, many of which can be traced to an incomplete understanding of surface phenomena involving the Li anode. Here, first-principles calculations are used to characterize the native oxide layer on Li, including several properties associated with the Li/lithium oxide (Li2O) interface. Multiple interface models are examined; the models account for differing interface (chemical) terminations and degrees of atomic ordering (i.e., crystalline vs amorphous). The interfacial energy, formation energy, and strain energies are predicted for these models. The amorphous interface yields the lowest interfacial formation energy, suggesting that it is the most probable model under equilibrium conditions. The work of adhesion is evaluated for the crystalline interfaces, and it is found that the O-terminated interface exhibits a work of adhesion more than 30 times larger than that of the Li-terminated model, implying that Li will strongly wet an oxygen-rich Li2O surface. The electronic structure of the interfaces is characterized using Voronoi charge analysis and shifts in the Li 1s binding energies. The width of the Li/Li2O interface, as determined by deviations from bulklike charges and binding energies, extends beyond the region exhibiting interfacial structural distortions. Finally, the transport of Li ions through the amorphous oxide is quantified using ab initio molecular dynamics. Facile transport of Li+ through the native oxide is observed. Thus, increasing the percentage of amorphous Li2O in the solid electrolyte interphase may be beneficial for battery performance. In total, the phenomena quantified here will aid in the optimization of batteries that employ high-capacity Li metal anodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123cxj完成签到,获得积分10
4秒前
CO2发布了新的文献求助10
4秒前
summer发布了新的文献求助10
4秒前
5秒前
Xx.发布了新的文献求助10
5秒前
大大关注了科研通微信公众号
5秒前
稚祎完成签到 ,获得积分10
5秒前
5秒前
CodeCraft应助东东采纳,获得10
6秒前
7秒前
叽里咕噜完成签到 ,获得积分10
8秒前
田様应助zccc采纳,获得10
9秒前
隐形的雁完成签到,获得积分10
9秒前
追寻的秋玲完成签到,获得积分10
10秒前
李繁蕊发布了新的文献求助10
10秒前
11秒前
舒心的紫雪完成签到 ,获得积分10
12秒前
12秒前
14秒前
14秒前
15秒前
不上课不行完成签到,获得积分10
16秒前
再干一杯完成签到,获得积分10
16秒前
17秒前
汉堡包应助rudjs采纳,获得10
18秒前
18秒前
zsyzxb发布了新的文献求助10
19秒前
东东发布了新的文献求助10
19秒前
zena92发布了新的文献求助10
20秒前
锤子米完成签到,获得积分10
20秒前
20秒前
赤练仙子完成签到,获得积分10
22秒前
MnO2fff应助zsyzxb采纳,获得20
25秒前
kingwill应助zsyzxb采纳,获得20
25秒前
顺利鱼完成签到,获得积分10
26秒前
28秒前
29秒前
Xx.完成签到,获得积分10
30秒前
星辰大海应助内向凌兰采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808