An Encrypted Traffic Classification Framework Based on Convolutional Neural Networks and Stacked Autoencoders

卷积神经网络 计算机科学 加密 交通分类 人工智能 机器学习 模式识别(心理学) 计算机网络 服务质量
作者
Maonan Wang,Kangfeng Zheng,Dan Luo,Yanqing Yang,Xiujuan Wang
标识
DOI:10.1109/iccc51575.2020.9344978
摘要

In recent years, deep learning-based encrypted traffic classification has proven to be effective; especially, using neural networks to extract features from raw traffic to classify encrypted traffic. However, most of the neural networks need a fixed-sized input, so that the raw traffic need to be trimmed. This will cause the loss of some information; for example, we do not know the number of packets in a session. To solve these problems, a framework, which implements both a convolutional neural network (CNN) and a stacked autoencoder (SAE), is proposed in this paper. This framework uses a CNN to extract high-level features from raw network traffic and uses an SAE to encode the 26 statistical features calculated by raw traffic directly. The statistical features can be used to supplement the information loss due to trimming. After that, the outputs from the CNN and the encoder in SAE are combined into new high-level features; these new features include the information from the trimmed raw traffic and statistical features. Finally, these new high-level features are used to classify encrypted traffic. "ISCX VPNnonVPN" traffic dataset is used to demonstrate the feasibility of this framework. The framework proposed in this paper can improve the performance of encrypted traffic classification; it achieves an f1-score of 0.98. Furthermore, new high-level features, which generated by combining the features extracted from a convolutional neural network and a stacked autoencoder, can represent different classes of traffic well. More importantly, this work is unique in the encrypted traffic classification field, for it is the first time to use both raw traffic and statistical features as the input of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸运花花关注了科研通微信公众号
刚刚
情怀应助香豆素采纳,获得10
刚刚
赵zhao完成签到,获得积分10
1秒前
来世飞鸟完成签到,获得积分10
1秒前
HHHAN完成签到,获得积分10
1秒前
1秒前
hjx完成签到,获得积分10
1秒前
周亭完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
4123发布了新的文献求助10
3秒前
娇气的春天完成签到 ,获得积分10
4秒前
Wang发布了新的文献求助10
4秒前
顺利的傲云完成签到,获得积分10
4秒前
EdwardKING完成签到,获得积分10
4秒前
我是老大应助舒适亦凝采纳,获得10
4秒前
CR完成签到 ,获得积分10
4秒前
风中的安珊完成签到,获得积分10
4秒前
席松完成签到,获得积分10
4秒前
白开水完成签到,获得积分10
4秒前
5秒前
来世飞鸟发布了新的文献求助10
6秒前
独特秋凌完成签到,获得积分10
6秒前
诚心桐完成签到,获得积分10
7秒前
shellyAPTX4869完成签到,获得积分10
7秒前
MJS完成签到,获得积分10
7秒前
Micale发布了新的文献求助10
7秒前
7秒前
7秒前
hiimcwn发布了新的文献求助10
7秒前
yuyu完成签到 ,获得积分10
8秒前
爆米花应助锂离子采纳,获得10
8秒前
9秒前
9秒前
淡定落雁完成签到,获得积分10
9秒前
FAN完成签到,获得积分10
9秒前
10秒前
莹亮的星空完成签到,获得积分0
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733818
求助须知:如何正确求助?哪些是违规求助? 3278017
关于积分的说明 10006622
捐赠科研通 2994199
什么是DOI,文献DOI怎么找? 1642937
邀请新用户注册赠送积分活动 780744
科研通“疑难数据库(出版商)”最低求助积分说明 749004