生物圈
归一化差异植被指数
环境科学
光化学反射率指数
植被(病理学)
遥感
天蓬
碳循环
生物圈模型
陆地生态系统
卫星
陆生植物
生态系统
碳汇
叶面积指数
生态学
气候变化
大气科学
地质学
生物
医学
工程类
病理
航空航天工程
作者
Gustau Camps‐Valls,Manuel Campos‐Taberner,Álvaro Moreno‐Martínez,Sophia Walther,Grégory Duveiller,Alessandro Cescatti,Miguel D. Mahecha,Jordi Muñoz-Marí,Francisco Javier Garcı́a-Haro,Luis Guanter,Martin Jung,John A. Gamon,Markus Reichstein,Steven W. Running
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2021-02-26
卷期号:7 (9)
被引量:279
标识
DOI:10.1126/sciadv.abc7447
摘要
Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation biophysical and physiological parameters. The presented nonlinear generalization of the celebrated normalized difference vegetation index (NDVI) consistently improves accuracy in monitoring key parameters, such as leaf area index, gross primary productivity, and sun-induced chlorophyll fluorescence. Results suggest that the statistical approach maximally exploits the spectral information and addresses long-standing problems in satellite Earth Observation of the terrestrial biosphere. The nonlinear NDVI will allow more accurate measures of terrestrial carbon source/sink dynamics and potentials for stabilizing atmospheric CO2 and mitigating global climate change.
科研通智能强力驱动
Strongly Powered by AbleSci AI