清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Multiscale Superpixel-Level Group Clustering Framework for Hyperspectral Band Selection

高光谱成像 聚类分析 模式识别(心理学) 人工智能 计算机科学 光谱聚类 光谱带 分割 分拆(数论) 背景(考古学) 空间分析 数学 地理 遥感 组合数学 统计 考古
作者
Sen Jia,Yue Yuan,Nanying Li,Jianhui Liao,Qiang Huang,Xiuping Jia,Meng Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:25
标识
DOI:10.1109/tgrs.2022.3150361
摘要

Hyperspectral imagery (HSI) contains hundreds of bands, which provide a wealth of spectral information and enable better characterization of features. However, the excessive dimensionality also poses a dimensional disaster for subsequent processing. Fortunately, band selection (BS) gives a straightforward and effective way to pick out a subset of bands with rich information and low correlation. Although many hyperspectral BS methods, especially clustering-based ones, have been proposed by researchers in recent years, the contextual information of adjacent bands and the spatial structural information of materials are not well investigated. Therefore, in this article, a multiscale superpixel-level group-clustering framework (MSGCF) has been proposed for hyperspectral BS. Different from previous, a new superpixel-level distance measure is elaborately utilized to group and cluster the spectral bands, which jointly considers the spectral context and spatial structure information. Concretely, to preserve the spatial structural information of HSI, multiple superpixel segmentation is first performed to generate superpixel maps in multiscales, which enables complementarity of multiple superpixel segmentation algorithms and adaptation to diverse scales of land cover types. Second, the grouping and clustering paradigm is introduced to conduct the contextual information among bands. Here the maximum points of superpixel-level KL- $\ell _{1}$ distance of adjacent bands are adopted as partition points to separate bands into groups, which encourages adjacent bands with strong correlation to be divided into the same group. Third, a superpixel-level fast density-based clustering method (SuFDPC) with superpixel-level $\ell _{2, 1}$ distance is developed to select representative bands in every group. Finally, BS results are achieved with a ranking-based voting strategy by concerning information entropy and frequency of occurrence in a unified scheme. A series of ablation analyses and experimental comparisons on four real HSI datasets have been conducted, as well as similarity comparisons for the selected bands. The experimental results consistently demonstrated the effectiveness of our MSGCF approach. The codes of this work will be available at http://jiasen.tech/papers/ for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的夏岚完成签到 ,获得积分10
刚刚
drhwang关注了科研通微信公众号
8秒前
haralee完成签到 ,获得积分10
12秒前
JF123_完成签到 ,获得积分10
16秒前
乾坤侠客LW完成签到,获得积分10
25秒前
PanzerV完成签到,获得积分20
29秒前
35秒前
英喆完成签到 ,获得积分10
36秒前
drhwang发布了新的文献求助10
41秒前
DJ_Tokyo完成签到,获得积分10
44秒前
woxinyouyou完成签到,获得积分0
54秒前
1分钟前
1分钟前
juan完成签到 ,获得积分10
1分钟前
1分钟前
一彤展翅完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
管靖易完成签到 ,获得积分10
2分钟前
qq完成签到 ,获得积分10
2分钟前
2分钟前
辉辉完成签到 ,获得积分10
2分钟前
2分钟前
chengmin完成签到 ,获得积分10
2分钟前
内向东蒽完成签到 ,获得积分10
2分钟前
yuehan完成签到 ,获得积分10
2分钟前
3分钟前
卫卫完成签到 ,获得积分10
3分钟前
研友_ngk5zn发布了新的文献求助10
3分钟前
lovexa完成签到,获得积分10
3分钟前
zijingsy完成签到 ,获得积分10
3分钟前
缓慢雅青完成签到 ,获得积分10
3分钟前
3分钟前
林利芳完成签到 ,获得积分10
3分钟前
喂我发布了新的文献求助10
3分钟前
阿Q完成签到,获得积分10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
大海的DOI完成签到,获得积分20
4分钟前
小王同学完成签到,获得积分10
4分钟前
落后冬云完成签到 ,获得积分10
4分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484484
求助须知:如何正确求助?哪些是违规求助? 3073483
关于积分的说明 9131089
捐赠科研通 2765140
什么是DOI,文献DOI怎么找? 1517646
邀请新用户注册赠送积分活动 702204
科研通“疑难数据库(出版商)”最低求助积分说明 701166