清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The accuracy of machine learning models using ultrasound images in prostate cancer diagnosis: A systematic review

人工智能 机器学习 人工神经网络 前列腺癌 计算机科学 纳入和排除标准 医学 前列腺活检 医学物理学 超声波 医学诊断 癌症 放射科 病理 内科学 替代医学
作者
Retta Catherina Sihotang,Claudio Agustino,Ficky Huang,Dyandra Parikesit,Fakhri Rahman,Agus Rizal Ardy Hariandy Hamid
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2022.02.03.22270377
摘要

ABSTRACT Prostate Cancer (PCa) is the third most commonly diagnosed cancer worldwide, and its diagnosis requires many medical examinations, including imaging. Ultrasound offers a practical and cost-effective method for prostate imaging due to its real-time availability at the bedside. Nowadays, various Artificial Intelligence (AI) models, including Machine learning (ML) with neural networks, have been developed to make an accurate diagnosis. In PCa diagnosis, there have been many developed models of ML and the model algorithm using ultrasound images shows good accuracy. This study aims to analyse the accuracy of neural network machine learning models in prostate cancer diagnosis using ultrasound images. The protocol was registered with PROSPERO registration number CRD42021277309. Three reviewers independently conduct a literature search in five online databases (MEDLINE, EBSCO, Proquest, Sciencedirect, and Scopus). We screened a total of 132 titles and abstracts that meet our inclusion and exclusion criteria. We included articles published in English, using human subjects, using neural networks machine learning models, and using prostate biopsy as a standard diagnosis. Non relevant studies and review articles were excluded. After screening, we found six articles relevant to our study. Risk of bias analysis was conducted using QUADAS-2 tool. Of the six articles, four articles used Artificial Neural Network (ANN), one article used Recurrent Neural Network (RNN), and one article used Deep Learning (DL). All articles suggest a positive result of ultrasound in the diagnosis of prostate cancer with a varied ROC curve of 0.76-0.98. Several factors affect AI accuracy, including the model of AI, mode and type of transrectal sonography, Gleason grading, and PSA level. Although there was only limited and low-moderate quality evidence, we managed to analyse the predominant findings comprehensively. In conclusion, machine learning with neural network models is a potential technology in prostate cancer diagnosis that could provide instant information for further workup with relatively high accuracy above 70% of sensitivity/specificity and above 0.5 of ROC-AUC value. Image-based machine learning models would be helpful for doctors to decide whether or not to perform a prostate biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mf2002mf完成签到 ,获得积分10
7秒前
Panda完成签到,获得积分10
21秒前
含蓄文博完成签到 ,获得积分10
41秒前
奶盐牙牙乐完成签到 ,获得积分10
1分钟前
元神完成签到 ,获得积分10
1分钟前
ling361完成签到,获得积分10
1分钟前
zzx完成签到,获得积分10
1分钟前
2分钟前
zzx发布了新的文献求助10
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
zhanglh完成签到 ,获得积分10
4分钟前
捉迷藏应助科研通管家采纳,获得10
5分钟前
檀123完成签到 ,获得积分10
5分钟前
笑点低代男完成签到,获得积分10
5分钟前
捉迷藏应助科研通管家采纳,获得10
7分钟前
脑洞疼应助科研通管家采纳,获得10
7分钟前
8分钟前
科研雪瑞发布了新的文献求助30
8分钟前
孙老师完成签到 ,获得积分10
9分钟前
彤光赫显完成签到 ,获得积分10
9分钟前
曾经不言完成签到 ,获得积分10
9分钟前
陈少华完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
10分钟前
10分钟前
搞怪的面包完成签到,获得积分10
10分钟前
赘婿应助科研通管家采纳,获得10
11分钟前
英喆完成签到 ,获得积分10
11分钟前
神说要有光完成签到,获得积分10
11分钟前
紫熊完成签到,获得积分10
12分钟前
Cutewm发布了新的文献求助80
14分钟前
14分钟前
Orange应助Cutewm采纳,获得10
15分钟前
Artin发布了新的文献求助30
15分钟前
橙橙橙完成签到,获得积分10
15分钟前
情怀应助qingshu采纳,获得10
16分钟前
16分钟前
qingshu发布了新的文献求助10
16分钟前
ywzwszl完成签到,获得积分10
17分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294585
求助须知:如何正确求助?哪些是违规求助? 2930487
关于积分的说明 8446131
捐赠科研通 2602765
什么是DOI,文献DOI怎么找? 1420704
科研通“疑难数据库(出版商)”最低求助积分说明 660658
邀请新用户注册赠送积分活动 643433