Deep learning algorithms for magnetic resonance imaging of inflammatory sacroiliitis in axial spondyloarthritis

骶髂关节炎 医学 磁共振成像 基本事实 人工智能 接收机工作特性 算法 深度学习 轴性脊柱炎 核医学 放射科 机器学习 计算机科学 内科学
作者
Karina Ying Ying Lin,Peng Cao,Kam Ho Lee,Shirley Chiu Wai Chan,Ho Yin Chung
出处
期刊:Rheumatology [Oxford University Press]
卷期号:61 (10): 4198-4206 被引量:22
标识
DOI:10.1093/rheumatology/keac059
摘要

The aim of this study was to develop a deep learning algorithm for detection of active inflammatory sacroiliitis in short tau inversion recovery (STIR) sequence MRI.A total of 326 participants with axial SpA, and 63 participants with non-specific back pain (NSBP) were recruited. STIR MRI of the SI joints was performed and clinical data were collected. Region of interests (ROIs) were drawn outlining bone marrow oedema, a reliable marker of active inflammation, which formed the ground truth masks from which 'fake-colour' images were derived. Both the original and fake-colour images were randomly allocated into either the training and validation dataset or the testing dataset. Attention U-net was used for the development of deep learning algorithms. As a comparison, an independent radiologist and rheumatologist, blinded to the ground truth masks, were tasked with identifying bone marrow oedema in the MRI scans.Inflammatory sacroiliitis was identified in 1398 MR images from 228 participants. No inflammation was found in 3944 MRI scans from 161 participants. The mean sensitivity of the algorithms derived from the original dataset and fake-colour image dataset were 0.86 (0.02) and 0.90 (0.01), respectively. The mean specificity of the algorithms derived from the original and the fake-colour image datasets were 0.92 (0.02) and 0.93 (0.01), respectively. The mean testing dice coefficients were 0.48 (0.27) for the original dataset and 0.51 (0.25) for the fake-colour image dataset. The area under the curve of the receiver operating characteristic (AUC-ROC) curve of the algorithms using the original dataset and the fake-colour image dataset were 0.92 and 0.96, respectively. The sensitivity and specificity of the algorithms were comparable with the interpretation by a radiologist, but outperformed that of the rheumatologist.An MRI deep learning algorithm was developed for detection of inflammatory sacroiliitis in axial SpA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
秀丽涵双完成签到,获得积分10
刚刚
1秒前
南信第一深情完成签到,获得积分10
1秒前
1秒前
1秒前
小鱼干发布了新的文献求助10
1秒前
tamsin完成签到,获得积分10
2秒前
2秒前
流星飞发布了新的文献求助10
3秒前
柠檬精翠翠完成签到 ,获得积分10
3秒前
4秒前
省略号发布了新的文献求助10
5秒前
xm发布了新的文献求助10
5秒前
科研通AI2S应助苦逼大王采纳,获得10
6秒前
zzz完成签到 ,获得积分10
6秒前
ID27149完成签到,获得积分10
7秒前
猪猪hero发布了新的文献求助10
7秒前
斯文败类应助zhaozhao采纳,获得10
7秒前
李健的小迷弟应助SS1988采纳,获得10
7秒前
咕咕鸡完成签到,获得积分10
8秒前
天Q发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
桐桐应助无聊的语风采纳,获得10
10秒前
等待的毛衣完成签到 ,获得积分10
11秒前
reflux应助浮生采纳,获得10
12秒前
完美世界应助du采纳,获得10
12秒前
13秒前
科研通AI5应助猪猪hero采纳,获得10
13秒前
东方红发布了新的文献求助10
14秒前
14秒前
莫言发布了新的文献求助10
14秒前
一期一会完成签到,获得积分10
14秒前
16秒前
共享精神应助迪迦奥特曼采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546424
求助须知:如何正确求助?哪些是违规求助? 3123558
关于积分的说明 9355871
捐赠科研通 2822198
什么是DOI,文献DOI怎么找? 1551271
邀请新用户注册赠送积分活动 723295
科研通“疑难数据库(出版商)”最低求助积分说明 713690