Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: a multicohort study.

肺癌 医学 肿瘤科 内科学 基因型 人口 表皮生长因子受体 癌症 前瞻性队列研究 队列
作者
Shuo Wang,He Yu,Yuncui Gan,Zhangjie Wu,Encheng Li,Xiaohu Li,Jingxue Cao,Yongbei Zhu,Liusu Wang,Hui Deng,Mei Xie,Yuanyong Wang,Xidong Ma,Dan Liu,Bojiang Chen,Panwen Tian,Zhixin Qiu,Jinghong Xian,Jing Ren,Kun Wang,Wei Wei,Fei Xie,Zhenhui Li,Qi Wang,Xinying Xue,Zaiyi Liu,Jingyun Shi,Weimin Li,Jie Tian
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (5): e309-e319
标识
DOI:10.1016/s2589-7500(22)00024-3
摘要

Epidermal growth factor receptor (EGFR) genotype is crucial for treatment decision making in lung cancer, but it can be affected by tumour heterogeneity and invasive biopsy during gene sequencing. Importantly, not all patients with an EGFR mutation have good prognosis with EGFR-tyrosine kinase inhibitors (TKIs), indicating the necessity of stratifying for EGFR-mutant genotype. In this study, we proposed a fully automated artificial intelligence system (FAIS) that mines whole-lung information from CT images to predict EGFR genotype and prognosis with EGFR-TKI treatment.We included 18 232 patients with lung cancer with CT imaging and EGFR gene sequencing from nine cohorts in China and the USA, including a prospective cohort in an Asian population (n=891) and The Cancer Imaging Archive cohort in a White population. These cohorts were divided into thick CT group and thin CT group. The FAIS was built for predicting EGFR genotype and progression-free survival of patients receiving EGFR-TKIs, and it was evaluated by area under the curve (AUC) and Kaplan-Meier analysis. We further built two tumour-based deep learning models as comparison with the FAIS, and we explored the value of combining FAIS and clinical factors (the FAIS-C model). Additionally, we included 891 patients with 56-panel next-generation sequencing and 87 patients with RNA sequencing data to explore the biological mechanisms of FAIS.FAIS achieved AUCs ranging from 0·748 to 0·813 in the six retrospective and prospective testing cohorts, outperforming the commonly used tumour-based deep learning model. Genotype predicted by the FAIS-C model was significantly associated with prognosis to EGFR-TKIs treatment (log-rank p<0·05), an important complement to gene sequencing. Moreover, we found 29 prognostic deep learning features in FAIS that were able to identify patients with an EGFR mutation at high risk of TKI resistance. These features showed strong associations with multiple genotypes (p<0·05, t test or Wilcoxon test) and gene pathways linked to drug resistance and cancer progression mechanisms.FAIS provides a non-invasive method to detect EGFR genotype and identify patients with an EGFR mutation at high risk of TKI resistance. The superior performance of FAIS over tumour-based deep learning methods suggests that genotype and prognostic information could be obtained from the whole lung instead of only tumour tissues.National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
找找发布了新的文献求助10
2秒前
SciGPT应助dyfsj采纳,获得10
2秒前
znn发布了新的文献求助10
2秒前
会会发布了新的文献求助10
2秒前
tinghai86完成签到,获得积分10
2秒前
研友_842aln发布了新的文献求助10
2秒前
CooL完成签到 ,获得积分10
3秒前
Jasper应助土土采纳,获得10
3秒前
3秒前
成就棒棒糖完成签到,获得积分20
4秒前
万能图书馆应助OKOK采纳,获得10
4秒前
Ava应助麻果采纳,获得20
5秒前
5秒前
鱼咬羊完成签到,获得积分10
5秒前
Annabelle完成签到,获得积分10
6秒前
18发布了新的文献求助10
6秒前
6秒前
SciGPT应助www采纳,获得10
6秒前
天真的雅绿完成签到,获得积分10
7秒前
GoodMorning发布了新的文献求助10
7秒前
8秒前
HONGZHOU完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
Halo完成签到,获得积分20
12秒前
蛋子s完成签到,获得积分10
13秒前
EMMA发布了新的文献求助10
13秒前
Akim应助LH采纳,获得10
13秒前
酷酷妙梦发布了新的文献求助10
13秒前
田様应助lishuai采纳,获得10
14秒前
14秒前
yixing发布了新的文献求助10
15秒前
所所应助dong采纳,获得10
15秒前
安详的甜瓜完成签到,获得积分10
15秒前
16秒前
我看你这篇有点像我要找的文献完成签到,获得积分10
16秒前
研友_842aln完成签到,获得积分10
16秒前
专业户完成签到,获得积分10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974559
求助须知:如何正确求助?哪些是违规求助? 3518949
关于积分的说明 11196503
捐赠科研通 3255066
什么是DOI,文献DOI怎么找? 1797673
邀请新用户注册赠送积分活动 877076
科研通“疑难数据库(出版商)”最低求助积分说明 806130