Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: a multicohort study.

肺癌 医学 肿瘤科 内科学 基因型 人口 表皮生长因子受体 癌症 前瞻性队列研究 队列
作者
Shuo Wang,He Yu,Yuncui Gan,Zhangjie Wu,Encheng Li,Xiaohu Li,Jingxue Cao,Yongbei Zhu,Liusu Wang,Hui Deng,Mei Xie,Yuanyong Wang,Xidong Ma,Dan Liu,Bojiang Chen,Panwen Tian,Zhixin Qiu,Jinghong Xian,Jing Ren,Kun Wang,Wei Wei,Fei Xie,Zhenhui Li,Qi Wang,Xinying Xue,Zaiyi Liu,Jingyun Shi,Weimin Li,Jie Tian
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (5): e309-e319
标识
DOI:10.1016/s2589-7500(22)00024-3
摘要

Epidermal growth factor receptor (EGFR) genotype is crucial for treatment decision making in lung cancer, but it can be affected by tumour heterogeneity and invasive biopsy during gene sequencing. Importantly, not all patients with an EGFR mutation have good prognosis with EGFR-tyrosine kinase inhibitors (TKIs), indicating the necessity of stratifying for EGFR-mutant genotype. In this study, we proposed a fully automated artificial intelligence system (FAIS) that mines whole-lung information from CT images to predict EGFR genotype and prognosis with EGFR-TKI treatment.We included 18 232 patients with lung cancer with CT imaging and EGFR gene sequencing from nine cohorts in China and the USA, including a prospective cohort in an Asian population (n=891) and The Cancer Imaging Archive cohort in a White population. These cohorts were divided into thick CT group and thin CT group. The FAIS was built for predicting EGFR genotype and progression-free survival of patients receiving EGFR-TKIs, and it was evaluated by area under the curve (AUC) and Kaplan-Meier analysis. We further built two tumour-based deep learning models as comparison with the FAIS, and we explored the value of combining FAIS and clinical factors (the FAIS-C model). Additionally, we included 891 patients with 56-panel next-generation sequencing and 87 patients with RNA sequencing data to explore the biological mechanisms of FAIS.FAIS achieved AUCs ranging from 0·748 to 0·813 in the six retrospective and prospective testing cohorts, outperforming the commonly used tumour-based deep learning model. Genotype predicted by the FAIS-C model was significantly associated with prognosis to EGFR-TKIs treatment (log-rank p<0·05), an important complement to gene sequencing. Moreover, we found 29 prognostic deep learning features in FAIS that were able to identify patients with an EGFR mutation at high risk of TKI resistance. These features showed strong associations with multiple genotypes (p<0·05, t test or Wilcoxon test) and gene pathways linked to drug resistance and cancer progression mechanisms.FAIS provides a non-invasive method to detect EGFR genotype and identify patients with an EGFR mutation at high risk of TKI resistance. The superior performance of FAIS over tumour-based deep learning methods suggests that genotype and prognostic information could be obtained from the whole lung instead of only tumour tissues.National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DaDA完成签到 ,获得积分10
刚刚
晚晚完成签到,获得积分10
刚刚
大陆完成签到,获得积分0
3秒前
猪猪女孩完成签到,获得积分10
4秒前
欢喜板凳完成签到 ,获得积分10
4秒前
lu完成签到,获得积分10
7秒前
郭元强完成签到,获得积分10
9秒前
小许完成签到 ,获得积分10
9秒前
10秒前
xiaofeiyan完成签到 ,获得积分10
12秒前
llhh2024完成签到,获得积分10
16秒前
心系天下完成签到 ,获得积分10
19秒前
David完成签到 ,获得积分10
20秒前
monoanan完成签到 ,获得积分10
21秒前
无极2023完成签到 ,获得积分0
21秒前
瘦瘦的铅笔完成签到 ,获得积分10
25秒前
pengyh8完成签到 ,获得积分10
29秒前
30秒前
xxxx完成签到 ,获得积分10
32秒前
mojito完成签到 ,获得积分10
33秒前
ZYN完成签到,获得积分10
36秒前
666星爷完成签到,获得积分10
40秒前
故意的冰淇淋完成签到 ,获得积分10
44秒前
牛奶面包完成签到 ,获得积分10
47秒前
羊羊羊完成签到 ,获得积分10
56秒前
怕黑道消完成签到 ,获得积分10
56秒前
mengmenglv完成签到 ,获得积分0
1分钟前
SOL完成签到 ,获得积分10
1分钟前
包容的剑完成签到 ,获得积分10
1分钟前
YJ完成签到,获得积分10
1分钟前
ii完成签到 ,获得积分10
1分钟前
MS903完成签到,获得积分10
1分钟前
1分钟前
刻苦的宛白应助张祖伦采纳,获得30
1分钟前
Lyw完成签到 ,获得积分10
1分钟前
Ying发布了新的文献求助20
1分钟前
1分钟前
alexlpb完成签到,获得积分0
1分钟前
浮尘完成签到 ,获得积分0
1分钟前
落叶完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513391
关于积分的说明 11167370
捐赠科研通 3248808
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664