A resting‐state fMRI study of temporal lobe epilepsy using multivariate pattern analysis and Granger causality analysis

医学 格兰杰因果关系 癫痫 颞叶 多元统计 静息状态功能磁共振成像 因果关系(物理学) 多元分析 神经科学 听力学 内科学 统计 精神科 放射科 心理学 数学 物理 量子力学
作者
Siyao Hao,Ying Duan,Lei Qi,Zhimei Li,Jiechuan Ren,Naluyele Nangale,Chunlan Yang
出处
期刊:Journal of Neuroimaging [Wiley]
卷期号:32 (5): 977-990 被引量:2
标识
DOI:10.1111/jon.13012
摘要

Abstract Background and Purpose Understanding the pathogenesis of temporal lobe epilepsy (TLE) is essential for its diagnosis and treatment. The study aimed to explore regional homogeneity (ReHo) and changes in effective connectivity (EC) between brain regions in TLE patients, hoping to discover potential abnormalities in certain brain regions in TLE patients. Methods Resting‐state functional magnetic resonance data were collected from 23 TLE patients and 32 normal controls (NC). ReHo was used as a feature of multivariate pattern analysis (MVPA) to explore the ability of its alterations in identifying TLE. Based on the results of the MVPA, certain brain regions were selected as seed points to further explore alterations in EC between brain regions using Granger causality analysis. Results MVPA results showed that the classification accuracy for the TLE and NC groups was 87.27%, and the right posterior cerebellum lobe, right lingual gyrus (LING_R), right cuneus (CUN_R), and left superior temporal gyrus (STG_L) provided significant contributions. Moreover, the EC from STG_L to right fusiform gyrus (FFG_R) and LING_R and the EC from CUN_R to the right occipital superior gyrus (SOG_R) and right occipital middle gyrus (MOG_R) were altered compared to the NC group. Conclusion The MVPA results indicated that ReHo abnormalities in brain regions may be an important feature in the identification of TLE. The enhanced EC from STG_L to FFG_R and LING_R indicates a shift in language processing to the right hemisphere, and the weakened EC from SOG_R and MOG_R to CUN_R may reveal an underlying mechanism of TLE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小橙子完成签到 ,获得积分10
刚刚
1秒前
1秒前
福娃发布了新的文献求助10
1秒前
2秒前
达斯维完成签到,获得积分10
2秒前
浪迹天涯发布了新的文献求助10
2秒前
今后应助杜嘟嘟采纳,获得30
2秒前
3秒前
3秒前
清圆527完成签到,获得积分10
3秒前
JamesPei应助Zhong采纳,获得10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
Emma完成签到 ,获得积分10
6秒前
6秒前
6秒前
清新的问枫完成签到,获得积分10
7秒前
7秒前
在水一方应助大方小白采纳,获得10
7秒前
阿凡达完成签到,获得积分10
7秒前
神勇的雅香应助大方小白采纳,获得10
7秒前
彬彬发布了新的文献求助10
7秒前
刘鹏宇发布了新的文献求助10
7秒前
斯文败类应助Stormi采纳,获得10
8秒前
9秒前
9秒前
木子发布了新的文献求助10
10秒前
yuyuyu完成签到 ,获得积分10
10秒前
10秒前
choi完成签到,获得积分10
10秒前
芒竹发布了新的文献求助10
10秒前
璐璐发布了新的文献求助10
10秒前
wwwww完成签到,获得积分10
11秒前
pearl发布了新的文献求助10
11秒前
一一完成签到,获得积分10
11秒前
李双艳发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740