Predicting metabolomic profiles from microbial composition through neural ordinary differential equations

代谢组学 可解释性 代谢组 微生物群 计算机科学 计算生物学 仿形(计算机编程) 人工神经网络 生物 机器学习 人工智能 生化工程 生物信息学 工程类 操作系统
作者
Tong Wang,Xu‐Wen Wang,Kathleen Lee-Sarwar,Augusto A. Litonjua,Scott T. Weiss,Yizhou Sun,Sergei Maslov,Yang‐Yu Liu
标识
DOI:10.1101/2022.06.23.497381
摘要

Abstract Characterizing the metabolic profile of a microbial community is crucial for understanding its biological function and its impact on the host or environment. Metabolomics experiments directly measuring these profiles are difficult and expensive, while sequencing methods quantifying the species composition of microbial communities are well-developed and relatively cost-effective. Computational methods that are capable of predicting metabolomic profiles from microbial compositions can save considerable efforts needed for metabolomic profiling experimentally. Yet, despite existing efforts, we still lack a computational method with high prediction power, general applicability, and great interpretability. Here we develop a new method — mNODE (Metabolomic profile predictor using Neural Ordinary Differential Equations), based on a state-of-the-art family of deep neural network models. We show compelling evidence that mNODE outperforms existing methods in predicting the metabolomic profiles of human microbiomes and several environmental microbiomes. Moreover, in the case of human gut microbiomes, mNODE can naturally incorporate dietary information to further enhance the prediction of metabolomic profiles. Besides, susceptibility analysis of mNODE enables us to reveal microbe-metabolite interactions, which can be validated using both synthetic and real data. The presented results demonstrate that mNODE is a powerful tool to investigate the microbiome-diet-metabolome relationship, facilitating future research on precision nutrition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代乌龟完成签到,获得积分10
刚刚
张光光发布了新的文献求助10
刚刚
刚刚
大卫发布了新的文献求助10
1秒前
拉佛多格完成签到,获得积分10
1秒前
英姑应助kaola采纳,获得30
2秒前
今后应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
曲奇饼干应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
z3Q应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
sutharsons应助科研通管家采纳,获得30
3秒前
科目三应助帅哥吴克采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
sutharsons应助科研通管家采纳,获得30
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
z3Q应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
z3Q应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
闾丘翠桃完成签到,获得积分10
4秒前
4秒前
丝叶狸藻完成签到,获得积分10
4秒前
4秒前
快乐妖丽发布了新的文献求助50
4秒前
多动症姑息状态完成签到,获得积分10
4秒前
5秒前
纳古菌完成签到,获得积分10
5秒前
6秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313068
求助须知:如何正确求助?哪些是违规求助? 2945372
关于积分的说明 8525166
捐赠科研通 2621142
什么是DOI,文献DOI怎么找? 1433411
科研通“疑难数据库(出版商)”最低求助积分说明 664954
邀请新用户注册赠送积分活动 650449