MTANet: Multitask-Aware Network With Hierarchical Multimodal Fusion for RGB-T Urban Scene Understanding

RGB颜色模型 计算机科学 人工智能 融合机制 分割 水准点(测量) 特征(语言学) 融合 深度学习 计算机视觉 模式识别(心理学) 语言学 哲学 大地测量学 脂质双层融合 地理
作者
Wujie Zhou,Sheng Dong,Jingsheng Lei,Lu Yu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 48-58 被引量:20
标识
DOI:10.1109/tiv.2022.3164899
摘要

Understanding urban scenes is a fundamental ability requirement for assisted driving and autonomous vehicles. Most of the available urban scene understanding methods use red-green-blue (RGB) images; however, their segmentation performances are prone to degradation under adverse lighting conditions. Recently, many effective artificial neural networks have been presented for urban scene understanding and have shown that incorporating RGB and thermal (RGB-T) images can improve segmentation accuracy even under unsatisfactory lighting conditions. However, the potential of multimodal feature fusion has not been fully exploited because operations such as simply concatenating the RGB and thermal features or averaging their maps have been adopted. To improve the fusion of multimodal features and the segmentation accuracy, we propose a multitask-aware network (MTANet) with hierarchical multimodal fusion (multiscale fusion strategy) for RGB-T urban scene understanding. We developed a hierarchical multimodal fusion module to enhance feature fusion and built a high-level semantic module to extract semantic information for merging with coarse features at various abstraction levels. Using the multilevel fusion module, we exploited low-, mid-, and high-level fusion to improve segmentation accuracy. The multitask module uses boundary, binary, and semantic supervision to optimize the MTANet parameters. Extensive experiments were performed on two benchmark RGB-T datasets to verify the improved performance of the proposed MTANet compared with state-of-the-art methods. 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ringo完成签到,获得积分10
刚刚
Nhiii应助无私的雪瑶采纳,获得60
1秒前
科研通AI2S应助mbf采纳,获得10
1秒前
wmumu完成签到,获得积分20
2秒前
不安灵槐发布了新的文献求助10
2秒前
2秒前
3秒前
好的发布了新的文献求助10
3秒前
Owen应助锦七采纳,获得10
4秒前
4秒前
5秒前
7秒前
7秒前
flow完成签到,获得积分10
9秒前
XA发布了新的文献求助10
9秒前
善学以致用应助好的采纳,获得10
10秒前
11秒前
rqf发布了新的文献求助10
11秒前
滴滴滴完成签到,获得积分10
13秒前
dell完成签到,获得积分10
13秒前
桐桐应助SONGYILIU采纳,获得10
15秒前
Agoni给Agoni的求助进行了留言
16秒前
你好CDY发布了新的文献求助10
16秒前
简单文博发布了新的文献求助10
16秒前
16秒前
坦率傲玉完成签到,获得积分10
17秒前
akakns完成签到,获得积分10
17秒前
杨嘟嘟完成签到,获得积分10
18秒前
Billy给Sandrine的求助进行了留言
20秒前
21秒前
haojiuhaojiu发布了新的文献求助10
22秒前
TK完成签到,获得积分10
23秒前
24秒前
25秒前
qaz发布了新的文献求助10
25秒前
26秒前
26秒前
SONGYILIU发布了新的文献求助10
29秒前
阳性苗发布了新的文献求助10
29秒前
情红锐完成签到,获得积分10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301930
求助须知:如何正确求助?哪些是违规求助? 2936523
关于积分的说明 8477760
捐赠科研通 2610221
什么是DOI,文献DOI怎么找? 1425053
科研通“疑难数据库(出版商)”最低求助积分说明 662252
邀请新用户注册赠送积分活动 646438