Boundary-guided network for camouflaged object detection

计算机科学 边界(拓扑) 分割 目标检测 水准点(测量) 人工智能 对象(语法) 编码(集合论) 钥匙(锁) 源代码 特征(语言学) 计算机视觉 模式识别(心理学) 集合(抽象数据类型) 数学分析 语言学 哲学 数学 大地测量学 计算机安全 程序设计语言 地理
作者
Tianyou Chen,Jin Xiao,Xiaoguang Hu,Guofeng Zhang,Shaojie Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:248: 108901-108901 被引量:60
标识
DOI:10.1016/j.knosys.2022.108901
摘要

Compared with the traditional object segmentation/detection, camouflaged object detection is much more difficult due to the indefinable boundaries and high intrinsic similarities between the camouflaged regions and the background. Although various algorithms have been proposed to solve the issue, these methods still suffer from coarse boundaries and are not competent to identify the camouflaged objects from the background in complex scenarios. In this paper, we propose a novel boundary-guided network to address this challenging problem in a coarse-to-fine manner. Specifically, we design a locating module to infer the initial location of the camouflaged objects by exploiting local detailed cues and global contextual information. Moreover, a boundary-guided fusion module is proposed to explore the complementary relationship between the camouflaged regions and their boundaries. By leveraging the boundary feature, we can not only generate prediction maps with sharper boundaries but also effectively eliminate background noises. Equipped with the two key modules, our BgNet is capable of segmenting camouflaged regions accurately and quickly. Extensive experimental results on four widely used benchmark datasets demonstrate that the proposed BgNet runs at a real-time speed (36 FPS) on a single NVIDIA Titan XP GPU and outperforms 17 state-of-the-art competing algorithms in terms of six standard evaluation metrics. Source code will be publicly available at https://github.com/clelouch/BgNet upon paper acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小杨弟弟完成签到,获得积分10
刚刚
simu233发布了新的文献求助10
1秒前
沈客卿完成签到,获得积分10
1秒前
自信鑫鹏发布了新的文献求助10
2秒前
2秒前
桐桐应助camillelizhaohe采纳,获得10
3秒前
MAVS发布了新的文献求助10
3秒前
4秒前
小杨弟弟发布了新的文献求助20
4秒前
4737完成签到,获得积分10
4秒前
746号完成签到 ,获得积分10
5秒前
5秒前
吐泡泡的奇异果完成签到,获得积分10
5秒前
魔幻灯泡完成签到,获得积分10
6秒前
6秒前
oath完成签到,获得积分10
6秒前
852应助难过元柏采纳,获得10
6秒前
yang完成签到,获得积分10
6秒前
wen发布了新的文献求助10
7秒前
hzh发布了新的文献求助10
7秒前
7秒前
金jin完成签到,获得积分10
8秒前
8秒前
田様应助水水子采纳,获得10
8秒前
8秒前
852应助快乐藏花采纳,获得10
8秒前
哈哈hh完成签到,获得积分10
9秒前
9秒前
9秒前
要减肥玉米应助念念采纳,获得10
10秒前
PJ完成签到,获得积分10
10秒前
11秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
chenlongfang完成签到,获得积分10
12秒前
劲秉应助科研通管家采纳,获得10
12秒前
慎独而已应助科研通管家采纳,获得20
12秒前
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474656
求助须知:如何正确求助?哪些是违规求助? 3066757
关于积分的说明 9100781
捐赠科研通 2758095
什么是DOI,文献DOI怎么找? 1513343
邀请新用户注册赠送积分活动 699504
科研通“疑难数据库(出版商)”最低求助积分说明 699016