Boundary-guided network for camouflaged object detection

计算机科学 边界(拓扑) 分割 目标检测 水准点(测量) 人工智能 对象(语法) 编码(集合论) 钥匙(锁) 源代码 特征(语言学) 计算机视觉 模式识别(心理学) 集合(抽象数据类型) 数学分析 语言学 哲学 数学 大地测量学 计算机安全 程序设计语言 地理
作者
Tianyou Chen,Jin Xiao,Xiaoguang Hu,Guofeng Zhang,Shaojie Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:248: 108901-108901 被引量:68
标识
DOI:10.1016/j.knosys.2022.108901
摘要

Compared with the traditional object segmentation/detection, camouflaged object detection is much more difficult due to the indefinable boundaries and high intrinsic similarities between the camouflaged regions and the background. Although various algorithms have been proposed to solve the issue, these methods still suffer from coarse boundaries and are not competent to identify the camouflaged objects from the background in complex scenarios. In this paper, we propose a novel boundary-guided network to address this challenging problem in a coarse-to-fine manner. Specifically, we design a locating module to infer the initial location of the camouflaged objects by exploiting local detailed cues and global contextual information. Moreover, a boundary-guided fusion module is proposed to explore the complementary relationship between the camouflaged regions and their boundaries. By leveraging the boundary feature, we can not only generate prediction maps with sharper boundaries but also effectively eliminate background noises. Equipped with the two key modules, our BgNet is capable of segmenting camouflaged regions accurately and quickly. Extensive experimental results on four widely used benchmark datasets demonstrate that the proposed BgNet runs at a real-time speed (36 FPS) on a single NVIDIA Titan XP GPU and outperforms 17 state-of-the-art competing algorithms in terms of six standard evaluation metrics. Source code will be publicly available at https://github.com/clelouch/BgNet upon paper acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助ln采纳,获得10
刚刚
524974281发布了新的文献求助10
1秒前
pluto应助猪猪hero采纳,获得10
2秒前
2秒前
mmmaosheng完成签到,获得积分10
2秒前
fishbig发布了新的文献求助10
2秒前
3秒前
蓝色斑马发布了新的文献求助10
4秒前
子非鱼发布了新的文献求助10
4秒前
高海龙完成签到,获得积分10
5秒前
saluo发布了新的文献求助10
5秒前
chengya发布了新的文献求助10
6秒前
6秒前
科目三应助芒果采纳,获得10
6秒前
7秒前
7秒前
May应助啾咪采纳,获得20
7秒前
8秒前
kang发布了新的文献求助10
8秒前
慕青应助旺仔采纳,获得10
8秒前
爆米花应助细心小鸭子采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
辞树完成签到,获得积分10
8秒前
生动的战斗机完成签到,获得积分10
9秒前
李爱国应助sjm1311218采纳,获得10
9秒前
9秒前
LLL发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
之晴发布了新的文献求助10
12秒前
zss发布了新的文献求助10
13秒前
13秒前
524974281完成签到,获得积分10
13秒前
虚幻羊青关注了科研通微信公众号
14秒前
纳纳椰发布了新的文献求助10
14秒前
cureall应助超cute宁采纳,获得30
14秒前
15秒前
crazyant完成签到,获得积分10
15秒前
bkagyin应助hkh采纳,获得10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288