Boundary-guided network for camouflaged object detection

计算机科学 边界(拓扑) 分割 目标检测 水准点(测量) 人工智能 对象(语法) 编码(集合论) 钥匙(锁) 源代码 特征(语言学) 计算机视觉 模式识别(心理学) 集合(抽象数据类型) 数学分析 语言学 哲学 数学 大地测量学 计算机安全 程序设计语言 地理
作者
Tianyou Chen,Jin Xiao,Xiaoguang Hu,Guofeng Zhang,Shaojie Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:248: 108901-108901 被引量:73
标识
DOI:10.1016/j.knosys.2022.108901
摘要

Compared with the traditional object segmentation/detection, camouflaged object detection is much more difficult due to the indefinable boundaries and high intrinsic similarities between the camouflaged regions and the background. Although various algorithms have been proposed to solve the issue, these methods still suffer from coarse boundaries and are not competent to identify the camouflaged objects from the background in complex scenarios. In this paper, we propose a novel boundary-guided network to address this challenging problem in a coarse-to-fine manner. Specifically, we design a locating module to infer the initial location of the camouflaged objects by exploiting local detailed cues and global contextual information. Moreover, a boundary-guided fusion module is proposed to explore the complementary relationship between the camouflaged regions and their boundaries. By leveraging the boundary feature, we can not only generate prediction maps with sharper boundaries but also effectively eliminate background noises. Equipped with the two key modules, our BgNet is capable of segmenting camouflaged regions accurately and quickly. Extensive experimental results on four widely used benchmark datasets demonstrate that the proposed BgNet runs at a real-time speed (36 FPS) on a single NVIDIA Titan XP GPU and outperforms 17 state-of-the-art competing algorithms in terms of six standard evaluation metrics. Source code will be publicly available at https://github.com/clelouch/BgNet upon paper acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芒go完成签到,获得积分10
1秒前
刘乐艺完成签到,获得积分10
1秒前
fighting应助科研通管家采纳,获得10
1秒前
jelly10应助科研通管家采纳,获得20
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
jelly10应助科研通管家采纳,获得30
2秒前
核桃应助科研通管家采纳,获得30
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
CHEIYEON发布了新的文献求助10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
情怀应助ji采纳,获得10
3秒前
电磁波发布了新的文献求助10
4秒前
Gao完成签到,获得积分20
4秒前
如意行天完成签到,获得积分10
5秒前
schen完成签到,获得积分10
6秒前
自信板栗发布了新的文献求助10
6秒前
9秒前
9秒前
Engen完成签到,获得积分10
10秒前
小蘑菇应助lifeng采纳,获得10
11秒前
wgw完成签到,获得积分10
11秒前
mm完成签到,获得积分10
12秒前
12秒前
hongjing发布了新的文献求助10
13秒前
13秒前
研友_8Kedgn完成签到,获得积分10
13秒前
行走的土豆完成签到,获得积分10
13秒前
李健的小迷弟应助cainiao采纳,获得10
14秒前
mildJYY完成签到,获得积分10
14秒前
QAQ完成签到,获得积分10
15秒前
领导范儿应助忐忑的雪晴采纳,获得10
15秒前
15秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429