Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification

多路复用 免疫组织化学 污渍 染色 病理 分割 计算机科学 水准点(测量) 人工智能 模式识别(心理学) 生物 医学 生物信息学 地图学 地理
作者
Parmida Ghahremani,Yanyun Li,Arie Kaufman,R. Vanguri,Noah F. Greenwald,Michael Angelo,Travis J. Hollmann,Saad Nadeem
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (4): 401-412 被引量:59
标识
DOI:10.1038/s42256-022-00471-x
摘要

Reporting biomarkers assessed by routine immunohistochemical (IHC) staining of tissue is broadly used in diagnostic pathology laboratories for patient care. To date, clinical reporting is predominantly qualitative or semi-quantitative. By creating a multitask deep learning framework referred to as DeepLIIF, we present a single-step solution to stain deconvolution/separation, cell segmentation, and quantitative single-cell IHC scoring. Leveraging a unique de novo dataset of co-registered IHC and multiplex immunofluorescence (mpIF) staining of the same slides, we segment and translate low-cost and prevalent IHC slides to more expensive-yet-informative mpIF images, while simultaneously providing the essential ground truth for the superimposed brightfield IHC channels. Moreover, a new nuclear-envelop stain, LAP2beta, with high (>95%) cell coverage is introduced to improve cell delineation/segmentation and protein expression quantification on IHC slides. By simultaneously translating input IHC images to clean/separated mpIF channels and performing cell segmentation/classification, we show that our model trained on clean IHC Ki67 data can generalize to more noisy and artifact-ridden images as well as other nuclear and non-nuclear markers such as CD3, CD8, BCL2, BCL6, MYC, MUM1, CD10, and TP53. We thoroughly evaluate our method on publicly available benchmark datasets as well as against pathologists' semi-quantitative scoring. The code, the pre-trained models, along with easy-to-run containerized docker files as well as Google CoLab project are available at https://github.com/nadeemlab/deepliif.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔乐完成签到,获得积分10
刚刚
支支发布了新的文献求助10
刚刚
1秒前
桐桐应助2123121321321采纳,获得10
1秒前
孔雀翎发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
shanshan发布了新的文献求助10
3秒前
ding应助机灵的雁菱采纳,获得10
3秒前
3秒前
杜鑫蓉发布了新的文献求助20
3秒前
寒冷乐驹发布了新的文献求助10
4秒前
星辰大海应助大胆猕猴桃采纳,获得10
4秒前
可爱的函函应助fei采纳,获得10
5秒前
zhangyuheng完成签到,获得积分10
5秒前
QQQ完成签到,获得积分10
5秒前
6秒前
QL发布了新的文献求助10
6秒前
我是老大应助LIUJUN采纳,获得10
7秒前
一匹黑狼完成签到,获得积分10
7秒前
打牙祭发布了新的文献求助10
7秒前
Akim应助老迟到的灵煌采纳,获得10
7秒前
花花呀发布了新的文献求助10
7秒前
脑洞疼应助大旭采纳,获得10
7秒前
情怀应助卓飞扬采纳,获得10
8秒前
8秒前
8秒前
8秒前
九九完成签到,获得积分20
8秒前
小二郎应助wj采纳,获得10
8秒前
鸣蜩阿六完成签到,获得积分10
8秒前
CodeCraft应助xiaoxiaoliang采纳,获得30
9秒前
烟花应助椿上春树采纳,获得10
9秒前
lewis完成签到,获得积分10
9秒前
斯文败类应助南北采纳,获得10
9秒前
ding应助xzyin采纳,获得10
9秒前
Ttttt完成签到,获得积分10
10秒前
Jennifer完成签到,获得积分10
10秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587