Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers

计算机科学 人工智能 安全性令牌 频域 算法 理论计算机科学 计算机视觉 计算机安全
作者
John Guibas,Morteza Mardani,Zongyi Li,Andrew Tao,Anima Anandkumar,Bryan Catanzaro
出处
期刊:Cornell University - arXiv 被引量:52
标识
DOI:10.48550/arxiv.2111.13587
摘要

Vision transformers have delivered tremendous success in representation learning. This is primarily due to effective token mixing through self attention. However, this scales quadratically with the number of pixels, which becomes infeasible for high-resolution inputs. To cope with this challenge, we propose Adaptive Fourier Neural Operator (AFNO) as an efficient token mixer that learns to mix in the Fourier domain. AFNO is based on a principled foundation of operator learning which allows us to frame token mixing as a continuous global convolution without any dependence on the input resolution. This principle was previously used to design FNO, which solves global convolution efficiently in the Fourier domain and has shown promise in learning challenging PDEs. To handle challenges in visual representation learning such as discontinuities in images and high resolution inputs, we propose principled architectural modifications to FNO which results in memory and computational efficiency. This includes imposing a block-diagonal structure on the channel mixing weights, adaptively sharing weights across tokens, and sparsifying the frequency modes via soft-thresholding and shrinkage. The resulting model is highly parallel with a quasi-linear complexity and has linear memory in the sequence size. AFNO outperforms self-attention mechanisms for few-shot segmentation in terms of both efficiency and accuracy. For Cityscapes segmentation with the Segformer-B3 backbone, AFNO can handle a sequence size of 65k and outperforms other efficient self-attention mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sasa完成签到,获得积分10
1秒前
CQD5201314发布了新的文献求助10
2秒前
2秒前
bingyu508发布了新的文献求助10
3秒前
丸子完成签到 ,获得积分10
3秒前
3秒前
嘻嘻完成签到,获得积分10
4秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
4秒前
黎咩e茹完成签到,获得积分10
4秒前
狂奔的蜗牛完成签到,获得积分10
4秒前
情怀应助chanyelo采纳,获得10
5秒前
大力的诗蕾完成签到,获得积分10
5秒前
刘shuchang完成签到 ,获得积分10
5秒前
6秒前
嘻嘻发布了新的文献求助10
7秒前
北竹完成签到,获得积分20
7秒前
NexusExplorer应助火星人采纳,获得10
7秒前
大个应助默渡采纳,获得30
7秒前
楪祈发布了新的文献求助10
7秒前
8秒前
yangzai完成签到 ,获得积分10
8秒前
领导范儿应助王贺采纳,获得10
9秒前
nicolaslcq完成签到,获得积分10
10秒前
Zx_1993应助啦啦啦采纳,获得10
11秒前
虚幻盼雁发布了新的文献求助10
11秒前
rafa完成签到 ,获得积分0
11秒前
12秒前
倪妮发布了新的文献求助10
12秒前
不要长胖完成签到,获得积分20
13秒前
123完成签到,获得积分10
13秒前
舒适的淇完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助100
13秒前
13秒前
云舒完成签到,获得积分10
13秒前
Owen应助小巧半芹采纳,获得10
14秒前
15秒前
楪祈完成签到,获得积分10
15秒前
16秒前
科研通AI6应助王大锤采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418877
求助须知:如何正确求助?哪些是违规求助? 4534462
关于积分的说明 14144391
捐赠科研通 4450753
什么是DOI,文献DOI怎么找? 2441377
邀请新用户注册赠送积分活动 1433091
关于科研通互助平台的介绍 1410502