Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers

计算机科学 人工智能 安全性令牌 频域 算法 理论计算机科学 计算机视觉 计算机安全
作者
John Guibas,Morteza Mardani,Zongyi Li,Andrew Tao,Anima Anandkumar,Bryan Catanzaro
出处
期刊:Cornell University - arXiv 被引量:52
标识
DOI:10.48550/arxiv.2111.13587
摘要

Vision transformers have delivered tremendous success in representation learning. This is primarily due to effective token mixing through self attention. However, this scales quadratically with the number of pixels, which becomes infeasible for high-resolution inputs. To cope with this challenge, we propose Adaptive Fourier Neural Operator (AFNO) as an efficient token mixer that learns to mix in the Fourier domain. AFNO is based on a principled foundation of operator learning which allows us to frame token mixing as a continuous global convolution without any dependence on the input resolution. This principle was previously used to design FNO, which solves global convolution efficiently in the Fourier domain and has shown promise in learning challenging PDEs. To handle challenges in visual representation learning such as discontinuities in images and high resolution inputs, we propose principled architectural modifications to FNO which results in memory and computational efficiency. This includes imposing a block-diagonal structure on the channel mixing weights, adaptively sharing weights across tokens, and sparsifying the frequency modes via soft-thresholding and shrinkage. The resulting model is highly parallel with a quasi-linear complexity and has linear memory in the sequence size. AFNO outperforms self-attention mechanisms for few-shot segmentation in terms of both efficiency and accuracy. For Cityscapes segmentation with the Segformer-B3 backbone, AFNO can handle a sequence size of 65k and outperforms other efficient self-attention mechanisms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅明发布了新的文献求助10
1秒前
WIKQ发布了新的文献求助10
2秒前
2秒前
3秒前
miemie66发布了新的文献求助10
3秒前
3秒前
耍酷芙蓉完成签到,获得积分10
4秒前
5秒前
豪哥发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
Alex完成签到,获得积分10
8秒前
111发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
勇敢牛牛完成签到,获得积分10
12秒前
陈cxz发布了新的文献求助10
14秒前
小蘑菇应助Yuuuu采纳,获得10
14秒前
nnc完成签到,获得积分10
15秒前
15秒前
南楼小阁主完成签到,获得积分10
16秒前
Long完成签到,获得积分10
16秒前
做最真的自己完成签到 ,获得积分10
16秒前
迷路的墨镜应助asdfzxcv采纳,获得10
17秒前
脑洞疼应助vanne采纳,获得30
18秒前
Coarrb完成签到,获得积分10
19秒前
花开富贵完成签到 ,获得积分10
19秒前
freya完成签到,获得积分10
19秒前
111完成签到,获得积分10
20秒前
梦自然完成签到 ,获得积分10
20秒前
20秒前
Long发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
难过的俊驰完成签到,获得积分10
21秒前
野原白完成签到,获得积分10
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659958
求助须知:如何正确求助?哪些是违规求助? 4830577
关于积分的说明 15088675
捐赠科研通 4818565
什么是DOI,文献DOI怎么找? 2578667
邀请新用户注册赠送积分活动 1533290
关于科研通互助平台的介绍 1492016