Machine-learning approach to predict molecular subgroups of medulloblastoma using multiparametric MRI-based tumor radiomics

人工智能 接收机工作特性 支持向量机 无线电技术 特征选择 Lasso(编程语言) 模式识别(心理学) 交叉验证 髓母细胞瘤 医学 随机森林 计算机科学 特征(语言学) 核医学 机器学习 病理 语言学 哲学 万维网
作者
Ann Christy Saju,Abhishek Chatterjee,Arpita Sahu,Tejpal Gupta,Rahul Krishnatry,Smruti Mokal,Ayushi Sahay,Sridhar Epari,Maya Prasad,Girish Chinnaswamy,Jai Prakash Agarwal,Jayant Sastri Goda
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1134) 被引量:8
标识
DOI:10.1259/bjr.20211359
摘要

Image-based prediction of molecular subgroups of Medulloblastoma (MB) has the potential to optimize and personalize therapy. The objective of the study is to distinguish between broad molecular subgroups of MB using MR-Texture analysis.Thirty-eight MB patients treated between 2007 and 2020 were retrospectively analyzed. Texture analysis was performed on contrast enhanced T1(T1C) and T2 weighted (T2W) MR images. Manual segmentation was performed on all slices and radiomic features were extracted which included first order, second order (GLCM - Grey level co-occurrence matrix) and shape features. Feature enrichment was done using LASSO (Least Absolute Shrinkage and Selection Operator) regression and thereafter Support Vector Machine (SVM) and a 10-fold cross-validation strategy was used for model development. The area under Receiver Operator Characteristic (ROC) curve was used to evaluate the model.A total of 174 and 170 images were obtained for analysis from the Axial T1C and T2W image datasets. One hundred and sixty-four MR based texture features were extracted. The best model was arrived at by using a combination of 30 GLCM and six shape features on T1C MR sequence. A 10-fold cross-validation demonstrated an AUC of 0.93, 0.9, 0.93, and 0.93 in predicting WNT, SHH, Group 3, and Group 4 MB subgroups, respectively.Radiomic analysis of MR images in MB can predict molecular subgroups with acceptable degree of accuracy. The strategy needs further validation in an external dataset for its potential use in ab initio management paradigms of MBs.Medulloblastoma can be classified into four distinct molecular subgroups using radiomic feature classifier from non-invasive Multiparametric Magnetic resonance imaging. This can have future ramifications in the extent of surgical resection of Medulloblastoma which can ultimately result in reduction of morbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ratziel完成签到,获得积分10
1秒前
jw发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
科目三应助txy采纳,获得10
4秒前
paopao发布了新的文献求助10
5秒前
5秒前
大模型应助十九岁的时差采纳,获得10
6秒前
飞在夏夜的猫完成签到,获得积分10
6秒前
6秒前
col樂完成签到,获得积分20
8秒前
Hello应助猪猪hero采纳,获得20
8秒前
9秒前
山城小肘子完成签到,获得积分10
9秒前
陈祥发布了新的文献求助10
9秒前
小七发布了新的文献求助10
11秒前
熊囧囧发布了新的文献求助10
11秒前
666发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
冷艳的道天关注了科研通微信公众号
12秒前
13秒前
13秒前
Harbor发布了新的文献求助10
13秒前
小蘑菇应助奇奇淼采纳,获得10
13秒前
14秒前
14秒前
CipherSage应助bubu采纳,获得10
14秒前
CodeCraft应助倪小呆采纳,获得10
16秒前
Tethys发布了新的文献求助10
16秒前
txy发布了新的文献求助10
17秒前
科研达人发布了新的文献求助10
17秒前
没有昵称发布了新的文献求助10
17秒前
mysteriousue发布了新的文献求助50
18秒前
佳佳应助小七采纳,获得10
18秒前
adam发布了新的文献求助10
19秒前
陈祥完成签到,获得积分10
19秒前
NexusExplorer应助俏皮的白柏采纳,获得10
19秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531183
关于积分的说明 11252671
捐赠科研通 3269809
什么是DOI,文献DOI怎么找? 1804780
邀请新用户注册赠送积分活动 881885
科研通“疑难数据库(出版商)”最低求助积分说明 809021