Machine-learning approach to predict molecular subgroups of medulloblastoma using multiparametric MRI-based tumor radiomics

人工智能 接收机工作特性 支持向量机 无线电技术 特征选择 Lasso(编程语言) 模式识别(心理学) 交叉验证 髓母细胞瘤 医学 随机森林 计算机科学 特征(语言学) 核医学 机器学习 病理 语言学 哲学 万维网
作者
Ann Christy Saju,Abhishek Chatterjee,Arpita Sahu,Tejpal Gupta,Rahul Krishnatry,Smruti Mokal,Ayushi Sahay,Sridhar Epari,Maya Prasad,Girish Chinnaswamy,Jai Prakash Agarwal,Jayant Sastri Goda
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1134) 被引量:8
标识
DOI:10.1259/bjr.20211359
摘要

Image-based prediction of molecular subgroups of Medulloblastoma (MB) has the potential to optimize and personalize therapy. The objective of the study is to distinguish between broad molecular subgroups of MB using MR-Texture analysis.Thirty-eight MB patients treated between 2007 and 2020 were retrospectively analyzed. Texture analysis was performed on contrast enhanced T1(T1C) and T2 weighted (T2W) MR images. Manual segmentation was performed on all slices and radiomic features were extracted which included first order, second order (GLCM - Grey level co-occurrence matrix) and shape features. Feature enrichment was done using LASSO (Least Absolute Shrinkage and Selection Operator) regression and thereafter Support Vector Machine (SVM) and a 10-fold cross-validation strategy was used for model development. The area under Receiver Operator Characteristic (ROC) curve was used to evaluate the model.A total of 174 and 170 images were obtained for analysis from the Axial T1C and T2W image datasets. One hundred and sixty-four MR based texture features were extracted. The best model was arrived at by using a combination of 30 GLCM and six shape features on T1C MR sequence. A 10-fold cross-validation demonstrated an AUC of 0.93, 0.9, 0.93, and 0.93 in predicting WNT, SHH, Group 3, and Group 4 MB subgroups, respectively.Radiomic analysis of MR images in MB can predict molecular subgroups with acceptable degree of accuracy. The strategy needs further validation in an external dataset for its potential use in ab initio management paradigms of MBs.Medulloblastoma can be classified into four distinct molecular subgroups using radiomic feature classifier from non-invasive Multiparametric Magnetic resonance imaging. This can have future ramifications in the extent of surgical resection of Medulloblastoma which can ultimately result in reduction of morbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
2秒前
znq051210发布了新的文献求助10
2秒前
4秒前
5秒前
大模型应助高贵宛海采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
核桃应助科研通管家采纳,获得10
7秒前
彭于彦祖应助科研通管家采纳,获得200
7秒前
7秒前
天然应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
今后应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
DijiaXu应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
leaolf应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
江南烟雨如笙完成签到 ,获得积分10
8秒前
林途发布了新的文献求助10
9秒前
Wink完成签到 ,获得积分10
9秒前
10秒前
kaede完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
科研通AI5应助deng采纳,获得10
14秒前
自由的小土豆完成签到,获得积分10
14秒前
西瓜发布了新的文献求助30
17秒前
Owen应助allenise采纳,获得10
17秒前
漱石枕流完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131087
求助须知:如何正确求助?哪些是违规求助? 4333112
关于积分的说明 13499238
捐赠科研通 4169825
什么是DOI,文献DOI怎么找? 2285943
邀请新用户注册赠送积分活动 1286868
关于科研通互助平台的介绍 1227780