亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-learning approach to predict molecular subgroups of medulloblastoma using multiparametric MRI-based tumor radiomics

人工智能 接收机工作特性 支持向量机 无线电技术 特征选择 Lasso(编程语言) 模式识别(心理学) 交叉验证 髓母细胞瘤 医学 随机森林 计算机科学 特征(语言学) 核医学 机器学习 病理 语言学 哲学 万维网
作者
Ann Christy Saju,Abhishek Chatterjee,Arpita Sahu,Tejpal Gupta,Rahul Krishnatry,Smruti Mokal,Ayushi Sahay,Sridhar Epari,Maya Prasad,Girish Chinnaswamy,Jai Prakash Agarwal,Jayant Sastri Goda
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1134) 被引量:8
标识
DOI:10.1259/bjr.20211359
摘要

Image-based prediction of molecular subgroups of Medulloblastoma (MB) has the potential to optimize and personalize therapy. The objective of the study is to distinguish between broad molecular subgroups of MB using MR-Texture analysis.Thirty-eight MB patients treated between 2007 and 2020 were retrospectively analyzed. Texture analysis was performed on contrast enhanced T1(T1C) and T2 weighted (T2W) MR images. Manual segmentation was performed on all slices and radiomic features were extracted which included first order, second order (GLCM - Grey level co-occurrence matrix) and shape features. Feature enrichment was done using LASSO (Least Absolute Shrinkage and Selection Operator) regression and thereafter Support Vector Machine (SVM) and a 10-fold cross-validation strategy was used for model development. The area under Receiver Operator Characteristic (ROC) curve was used to evaluate the model.A total of 174 and 170 images were obtained for analysis from the Axial T1C and T2W image datasets. One hundred and sixty-four MR based texture features were extracted. The best model was arrived at by using a combination of 30 GLCM and six shape features on T1C MR sequence. A 10-fold cross-validation demonstrated an AUC of 0.93, 0.9, 0.93, and 0.93 in predicting WNT, SHH, Group 3, and Group 4 MB subgroups, respectively.Radiomic analysis of MR images in MB can predict molecular subgroups with acceptable degree of accuracy. The strategy needs further validation in an external dataset for its potential use in ab initio management paradigms of MBs.Medulloblastoma can be classified into four distinct molecular subgroups using radiomic feature classifier from non-invasive Multiparametric Magnetic resonance imaging. This can have future ramifications in the extent of surgical resection of Medulloblastoma which can ultimately result in reduction of morbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
33秒前
34秒前
jarrykim发布了新的文献求助10
39秒前
大个应助啊呆哦采纳,获得10
52秒前
1分钟前
啊呆哦完成签到,获得积分10
1分钟前
在水一方应助sidneyyang采纳,获得10
1分钟前
啊呆哦发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
吴南宛发布了新的文献求助10
2分钟前
sidneyyang完成签到,获得积分10
2分钟前
211JZH完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
直率的笑翠完成签到 ,获得积分10
3分钟前
sidneyyang发布了新的文献求助10
3分钟前
3分钟前
Ashao完成签到 ,获得积分10
3分钟前
3分钟前
Sym发布了新的文献求助10
3分钟前
3分钟前
繁觅完成签到,获得积分10
3分钟前
4分钟前
nini发布了新的文献求助10
4分钟前
Sym发布了新的文献求助10
4分钟前
4分钟前
火星完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889441
求助须知:如何正确求助?哪些是违规求助? 4173461
关于积分的说明 12952082
捐赠科研通 3934886
什么是DOI,文献DOI怎么找? 2159100
邀请新用户注册赠送积分活动 1177437
关于科研通互助平台的介绍 1082254