Machine learning model for classification of predominantly allergic and non-allergic asthma among preschool children with asthma hospitalization

哮喘 医学 逻辑回归 机器学习 人工智能 儿科 免疫学 内科学 计算机科学
作者
Piyush Bhardwaj,Ashish Tyagi,Shashank Tyagi,Joana Antão,Qichen Deng
出处
期刊:Journal of Asthma [Taylor & Francis]
卷期号:60 (3): 487-495 被引量:9
标识
DOI:10.1080/02770903.2022.2059763
摘要

Asthma is the most frequent chronic airway illness in preschool children and is difficult to diagnose due to the disease's heterogeneity. This study aimed to investigate different machine learning models and suggested the most effective one to classify two forms of asthma in preschool children (predominantly allergic asthma and non-allergic asthma) using a minimum number of features.After pre-processing, 127 patients (70 with non-allergic asthma and 57 with predominantly allergic asthma) were chosen for final analysis from the Frankfurt dataset, which had asthma-related information on 205 patients. The Random Forest algorithm and Chi-square were used to select the key features from a total of 63 features. Six machine learning models: random forest, extreme gradient boosting, support vector machines, adaptive boosting, extra tree classifier, and logistic regression were then trained and tested using 10-fold stratified cross-validation.Among all features, age, weight, C-reactive protein, eosinophilic granulocytes, oxygen saturation, pre-medication inhaled corticosteroid + long-acting beta2-agonist (PM-ICS + LABA), PM-other (other pre-medication), H-Pulmicort/celestamine (Pulmicort/celestamine during hospitalization), and H-azithromycin (azithromycin during hospitalization) were found to be highly important. The support vector machine approach with a linear kernel was able to diffrentiate between predominantly allergic asthma and non-allergic asthma with higher accuracy (77.8%), precision (0.81), with a true positive rate of 0.73 and a true negative rate of 0.81, a F1 score of 0.81, and a ROC-AUC score of 0.79. Logistic regression was found to be the second-best classifier with an overall accuracy of 76.2%.Predominantly allergic and non-allergic asthma can be classified using machine learning approaches based on nine features.Supplemental data for this article is available online at at www.tandfonline.com/ijas .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
抹缇卡完成签到 ,获得积分10
刚刚
1秒前
菠萝卷发布了新的文献求助10
1秒前
娜娜呀发布了新的文献求助20
1秒前
wsh071117发布了新的文献求助10
1秒前
may发布了新的文献求助10
1秒前
Wecple完成签到 ,获得积分10
2秒前
3秒前
3秒前
lqkcqmu发布了新的文献求助10
3秒前
3秒前
共享精神应助runer采纳,获得10
3秒前
3秒前
dida完成签到,获得积分10
4秒前
4秒前
gaoyuxuan完成签到,获得积分10
4秒前
5秒前
Robe发布了新的文献求助30
5秒前
spy完成签到,获得积分10
5秒前
6秒前
6秒前
mysilicon应助黄花采纳,获得10
6秒前
碧蓝莫言给碧蓝莫言的求助进行了留言
6秒前
6秒前
6秒前
7秒前
7秒前
lonf完成签到,获得积分10
7秒前
yn完成签到 ,获得积分10
7秒前
8秒前
北欧海盗发布了新的文献求助10
8秒前
spy发布了新的文献求助10
8秒前
布布完成签到,获得积分10
8秒前
9秒前
10秒前
Mannone发布了新的文献求助10
10秒前
ZOEzoe发布了新的文献求助30
10秒前
11秒前
Jasper应助cannon8采纳,获得50
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600