重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Machine learning model for classification of predominantly allergic and non-allergic asthma among preschool children with asthma hospitalization

哮喘 医学 逻辑回归 机器学习 人工智能 儿科 免疫学 内科学 计算机科学
作者
Piyush Bhardwaj,Ashish Tyagi,Shashank Tyagi,Joana Antão,Qichen Deng
出处
期刊:Journal of Asthma [Informa]
卷期号:60 (3): 487-495 被引量:9
标识
DOI:10.1080/02770903.2022.2059763
摘要

Asthma is the most frequent chronic airway illness in preschool children and is difficult to diagnose due to the disease's heterogeneity. This study aimed to investigate different machine learning models and suggested the most effective one to classify two forms of asthma in preschool children (predominantly allergic asthma and non-allergic asthma) using a minimum number of features.After pre-processing, 127 patients (70 with non-allergic asthma and 57 with predominantly allergic asthma) were chosen for final analysis from the Frankfurt dataset, which had asthma-related information on 205 patients. The Random Forest algorithm and Chi-square were used to select the key features from a total of 63 features. Six machine learning models: random forest, extreme gradient boosting, support vector machines, adaptive boosting, extra tree classifier, and logistic regression were then trained and tested using 10-fold stratified cross-validation.Among all features, age, weight, C-reactive protein, eosinophilic granulocytes, oxygen saturation, pre-medication inhaled corticosteroid + long-acting beta2-agonist (PM-ICS + LABA), PM-other (other pre-medication), H-Pulmicort/celestamine (Pulmicort/celestamine during hospitalization), and H-azithromycin (azithromycin during hospitalization) were found to be highly important. The support vector machine approach with a linear kernel was able to diffrentiate between predominantly allergic asthma and non-allergic asthma with higher accuracy (77.8%), precision (0.81), with a true positive rate of 0.73 and a true negative rate of 0.81, a F1 score of 0.81, and a ROC-AUC score of 0.79. Logistic regression was found to be the second-best classifier with an overall accuracy of 76.2%.Predominantly allergic and non-allergic asthma can be classified using machine learning approaches based on nine features.Supplemental data for this article is available online at at www.tandfonline.com/ijas .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晶晶发布了新的文献求助20
刚刚
1秒前
1秒前
内向的跳跳糖完成签到,获得积分10
1秒前
yan完成签到,获得积分10
1秒前
斯文败类应助ccc采纳,获得10
1秒前
妮妮完成签到,获得积分10
2秒前
典雅的雨泽完成签到,获得积分10
2秒前
领导范儿应助和谐的路灯采纳,获得10
2秒前
3秒前
爆米花应助自由的幻悲采纳,获得30
3秒前
3秒前
561424175完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
知其荣发布了新的文献求助10
4秒前
搞怪飞机发布了新的文献求助10
4秒前
肥仔龙发布了新的文献求助10
4秒前
yin发布了新的文献求助10
5秒前
Junyi发布了新的文献求助10
5秒前
阿斯顿发布了新的文献求助10
5秒前
CipherSage应助Sandy采纳,获得10
5秒前
6秒前
小二郎应助啾啾采纳,获得10
6秒前
6秒前
哎哟我去完成签到,获得积分10
6秒前
科研通AI2S应助李浩然采纳,获得10
6秒前
6秒前
香蕉觅云应助半糖微辣采纳,获得10
6秒前
6秒前
7秒前
CipherSage应助GC_AIBio采纳,获得10
7秒前
7秒前
chen发布了新的文献求助10
8秒前
Ting完成签到,获得积分10
8秒前
yyds发布了新的文献求助10
8秒前
熙梓日记完成签到,获得积分10
8秒前
SciGPT应助Lu采纳,获得10
8秒前
可爱的函函应助qianlu采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466271
求助须知:如何正确求助?哪些是违规求助? 4570197
关于积分的说明 14323735
捐赠科研通 4496698
什么是DOI,文献DOI怎么找? 2463500
邀请新用户注册赠送积分活动 1452381
关于科研通互助平台的介绍 1427516