亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning model for classification of predominantly allergic and non-allergic asthma among preschool children with asthma hospitalization

哮喘 医学 逻辑回归 机器学习 人工智能 儿科 免疫学 内科学 计算机科学
作者
Piyush Bhardwaj,Ashish Tyagi,Shashank Tyagi,Joana Antão,Qichen Deng
出处
期刊:Journal of Asthma [Informa]
卷期号:60 (3): 487-495 被引量:9
标识
DOI:10.1080/02770903.2022.2059763
摘要

Asthma is the most frequent chronic airway illness in preschool children and is difficult to diagnose due to the disease's heterogeneity. This study aimed to investigate different machine learning models and suggested the most effective one to classify two forms of asthma in preschool children (predominantly allergic asthma and non-allergic asthma) using a minimum number of features.After pre-processing, 127 patients (70 with non-allergic asthma and 57 with predominantly allergic asthma) were chosen for final analysis from the Frankfurt dataset, which had asthma-related information on 205 patients. The Random Forest algorithm and Chi-square were used to select the key features from a total of 63 features. Six machine learning models: random forest, extreme gradient boosting, support vector machines, adaptive boosting, extra tree classifier, and logistic regression were then trained and tested using 10-fold stratified cross-validation.Among all features, age, weight, C-reactive protein, eosinophilic granulocytes, oxygen saturation, pre-medication inhaled corticosteroid + long-acting beta2-agonist (PM-ICS + LABA), PM-other (other pre-medication), H-Pulmicort/celestamine (Pulmicort/celestamine during hospitalization), and H-azithromycin (azithromycin during hospitalization) were found to be highly important. The support vector machine approach with a linear kernel was able to diffrentiate between predominantly allergic asthma and non-allergic asthma with higher accuracy (77.8%), precision (0.81), with a true positive rate of 0.73 and a true negative rate of 0.81, a F1 score of 0.81, and a ROC-AUC score of 0.79. Logistic regression was found to be the second-best classifier with an overall accuracy of 76.2%.Predominantly allergic and non-allergic asthma can be classified using machine learning approaches based on nine features.Supplemental data for this article is available online at at www.tandfonline.com/ijas .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
tracyzhang完成签到 ,获得积分10
17秒前
28秒前
31秒前
大脸猫完成签到 ,获得积分10
39秒前
41秒前
天天快乐应助牟白容采纳,获得10
41秒前
DJ国完成签到,获得积分10
52秒前
轻松的贞发布了新的文献求助10
54秒前
56秒前
1分钟前
实力不允许完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
清爽夜雪完成签到,获得积分10
2分钟前
3分钟前
3分钟前
可爱的函函应助lll采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
5分钟前
5分钟前
6分钟前
快递乱跑完成签到 ,获得积分10
6分钟前
刘涵完成签到 ,获得积分10
6分钟前
6分钟前
完美世界应助科研通管家采纳,获得10
7分钟前
FashionBoy应助科研通管家采纳,获得10
7分钟前
爆米花应助zyj采纳,获得10
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
zyj完成签到,获得积分10
8分钟前
畅快的毛衣完成签到,获得积分10
8分钟前
zyj发布了新的文献求助10
8分钟前
8分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Association Between Clozapine Exposure and Risk of Hematologic Malignancies in Veterans With Schizophrenia 850
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298744
求助须知:如何正确求助?哪些是违规求助? 2933754
关于积分的说明 8464774
捐赠科研通 2606875
什么是DOI,文献DOI怎么找? 1423470
科研通“疑难数据库(出版商)”最低求助积分说明 661593
邀请新用户注册赠送积分活动 645188